Spaces:
Running
Running
Clémentine
commited on
Commit
•
699e8ff
1
Parent(s):
6254b87
Adding flagging systemi, removing changelog
Browse files- app.py +2 -2
- src/assets/css_html_js.py +0 -7
- src/assets/text_content.py +3 -56
- src/auto_leaderboard/get_model_metadata.py +60 -2
- src/auto_leaderboard/load_results.py +3 -3
- src/auto_leaderboard/model_metadata_flags.py +5 -0
- src/auto_leaderboard/model_metadata_type.py +2 -48
- src/utils_display.py +14 -12
app.py
CHANGED
@@ -82,7 +82,7 @@ def get_leaderboard_df():
|
|
82 |
print("Pulling evaluation results for the leaderboard.")
|
83 |
eval_results_private.git_pull()
|
84 |
|
85 |
-
all_data = get_eval_results_dicts(
|
86 |
|
87 |
if not IS_PUBLIC:
|
88 |
all_data.append(gpt4_values)
|
@@ -341,7 +341,7 @@ with demo:
|
|
341 |
elem_id="filter-columns"
|
342 |
)
|
343 |
leaderboard_table = gr.components.Dataframe(
|
344 |
-
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value+ [AutoEvalColumn.dummy.name]],
|
345 |
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
|
346 |
datatype=TYPES,
|
347 |
max_rows=None,
|
|
|
82 |
print("Pulling evaluation results for the leaderboard.")
|
83 |
eval_results_private.git_pull()
|
84 |
|
85 |
+
all_data = get_eval_results_dicts()
|
86 |
|
87 |
if not IS_PUBLIC:
|
88 |
all_data.append(gpt4_values)
|
|
|
341 |
elem_id="filter-columns"
|
342 |
)
|
343 |
leaderboard_table = gr.components.Dataframe(
|
344 |
+
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name]],
|
345 |
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
|
346 |
datatype=TYPES,
|
347 |
max_rows=None,
|
src/assets/css_html_js.py
CHANGED
@@ -1,11 +1,4 @@
|
|
1 |
custom_css = """
|
2 |
-
#changelog-text {
|
3 |
-
font-size: 16px !important;
|
4 |
-
}
|
5 |
-
|
6 |
-
#changelog-text h2 {
|
7 |
-
font-size: 18px !important;
|
8 |
-
}
|
9 |
|
10 |
.markdown-text {
|
11 |
font-size: 16px !important;
|
|
|
1 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
.markdown-text {
|
4 |
font-size: 16px !important;
|
src/assets/text_content.py
CHANGED
@@ -1,61 +1,5 @@
|
|
1 |
from ..auto_leaderboard.model_metadata_type import ModelType
|
2 |
|
3 |
-
CHANGELOG_TEXT = f"""
|
4 |
-
## [2023-06-19]
|
5 |
-
- Added model type column
|
6 |
-
- Hid revision and 8bit columns since all models are the same atm
|
7 |
-
|
8 |
-
## [2023-06-16]
|
9 |
-
- Refactored code base
|
10 |
-
- Added new columns: number of parameters, hub likes, license
|
11 |
-
|
12 |
-
## [2023-06-13]
|
13 |
-
- Adjust description for TruthfulQA
|
14 |
-
|
15 |
-
## [2023-06-12]
|
16 |
-
- Add Human & GPT-4 Evaluations
|
17 |
-
|
18 |
-
## [2023-06-05]
|
19 |
-
- Increase concurrent thread count to 40
|
20 |
-
- Search models on ENTER
|
21 |
-
|
22 |
-
## [2023-06-02]
|
23 |
-
- Add a typeahead search bar
|
24 |
-
- Use webhooks to automatically spawn a new Space when someone opens a PR
|
25 |
-
- Start recording `submitted_time` for eval requests
|
26 |
-
- Limit AutoEvalColumn max-width
|
27 |
-
|
28 |
-
## [2023-05-30]
|
29 |
-
- Add a citation button
|
30 |
-
- Simplify Gradio layout
|
31 |
-
|
32 |
-
## [2023-05-29]
|
33 |
-
- Auto-restart every hour for the latest results
|
34 |
-
- Sync with the internal version (minor style changes)
|
35 |
-
|
36 |
-
## [2023-05-24]
|
37 |
-
- Add a baseline that has 25.0 for all values
|
38 |
-
- Add CHANGELOG
|
39 |
-
|
40 |
-
## [2023-05-23]
|
41 |
-
- Fix a CSS issue that made the leaderboard hard to read in dark mode
|
42 |
-
|
43 |
-
## [2023-05-22]
|
44 |
-
- Display a success/error message after submitting evaluation requests
|
45 |
-
- Reject duplicate submission
|
46 |
-
- Do not display results that have incomplete results
|
47 |
-
- Display different queues for jobs that are RUNNING, PENDING, FINISHED status
|
48 |
-
|
49 |
-
## [2023-05-15]
|
50 |
-
- Fix a typo: from "TruthQA" to "QA"
|
51 |
-
|
52 |
-
## [2023-05-10]
|
53 |
-
- Fix a bug that prevented auto-refresh
|
54 |
-
|
55 |
-
## [2023-05-10]
|
56 |
-
- Release the leaderboard to public
|
57 |
-
"""
|
58 |
-
|
59 |
TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""
|
60 |
|
61 |
INTRODUCTION_TEXT = f"""
|
@@ -81,6 +25,9 @@ With the plethora of large language models (LLMs) and chatbots being released we
|
|
81 |
{ModelType.RL.to_str(" : ")} model
|
82 |
If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
|
83 |
|
|
|
|
|
|
|
84 |
## How it works
|
85 |
|
86 |
📈 We evaluate models on 4 key benchmarks using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
|
|
|
1 |
from ..auto_leaderboard.model_metadata_type import ModelType
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""
|
4 |
|
5 |
INTRODUCTION_TEXT = f"""
|
|
|
25 |
{ModelType.RL.to_str(" : ")} model
|
26 |
If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
|
27 |
|
28 |
+
🏴☠️ indicates that this model has been flagged by the community, and should probably be ignored! Clicking the icon will redirect you to the discussion about the model.
|
29 |
+
(For ex, the model was trained on the evaluation data, and is therefore cheating on the leaderboard.)
|
30 |
+
|
31 |
## How it works
|
32 |
|
33 |
📈 We evaluate models on 4 key benchmarks using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
|
src/auto_leaderboard/get_model_metadata.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import re
|
2 |
import os
|
|
|
|
|
|
|
3 |
from typing import List
|
4 |
from tqdm import tqdm
|
5 |
|
6 |
-
from src.utils_display import AutoEvalColumn
|
7 |
-
from src.auto_leaderboard.model_metadata_type import
|
|
|
8 |
|
9 |
from huggingface_hub import HfApi
|
10 |
import huggingface_hub
|
@@ -52,6 +56,60 @@ def get_model_size(model_name, model_info):
|
|
52 |
return None
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def apply_metadata(leaderboard_data: List[dict]):
|
56 |
get_model_type(leaderboard_data)
|
57 |
get_model_infos_from_hub(leaderboard_data)
|
|
|
|
1 |
import re
|
2 |
import os
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import os
|
6 |
from typing import List
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
+
from src.utils_display import AutoEvalColumn, model_hyperlink
|
10 |
+
from src.auto_leaderboard.model_metadata_type import ModelType, model_type_from_str, MODEL_TYPE_METADATA
|
11 |
+
from src.auto_leaderboard.model_metadata_flags import FLAGGED_MODELS
|
12 |
|
13 |
from huggingface_hub import HfApi
|
14 |
import huggingface_hub
|
|
|
56 |
return None
|
57 |
|
58 |
|
59 |
+
def get_model_type(leaderboard_data: List[dict]):
|
60 |
+
for model_data in leaderboard_data:
|
61 |
+
request_files = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
|
62 |
+
request_files = glob.glob(request_files)
|
63 |
+
|
64 |
+
# Select correct request file (precision)
|
65 |
+
request_file = ""
|
66 |
+
if len(request_files) == 1:
|
67 |
+
request_file = request_files[0]
|
68 |
+
elif len(request_files) > 1:
|
69 |
+
request_files = sorted(request_files, reverse=True)
|
70 |
+
for tmp_request_file in request_files:
|
71 |
+
with open(tmp_request_file, "r") as f:
|
72 |
+
req_content = json.load(f)
|
73 |
+
if req_content["status"] == "FINISHED" and req_content["precision"] == model_data["Precision"].split(".")[-1]:
|
74 |
+
request_file = tmp_request_file
|
75 |
+
|
76 |
+
if request_file == "":
|
77 |
+
model_data[AutoEvalColumn.model_type.name] = ""
|
78 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = ""
|
79 |
+
continue
|
80 |
+
|
81 |
+
try:
|
82 |
+
with open(request_file, "r") as f:
|
83 |
+
request = json.load(f)
|
84 |
+
is_delta = request["weight_type"] != "Original"
|
85 |
+
except Exception:
|
86 |
+
is_delta = False
|
87 |
+
|
88 |
+
try:
|
89 |
+
with open(request_file, "r") as f:
|
90 |
+
request = json.load(f)
|
91 |
+
model_type = model_type_from_str(request["model_type"])
|
92 |
+
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
93 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol #+ ("🔺" if is_delta else "")
|
94 |
+
except KeyError:
|
95 |
+
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
|
96 |
+
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
97 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[model_data["model_name_for_query"]].value.symbol #+ ("🔺" if is_delta else "")
|
98 |
+
else:
|
99 |
+
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
|
100 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
|
101 |
+
|
102 |
+
def flag_models(leaderboard_data:List[dict]):
|
103 |
+
flag_symbol = "💀"
|
104 |
+
for model_data in leaderboard_data:
|
105 |
+
if model_data["model_name_for_query"] in FLAGGED_MODELS:
|
106 |
+
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1]
|
107 |
+
issue_link = model_hyperlink(FLAGGED_MODELS[model_data["model_name_for_query"]], f"See discussion #{issue_num}")
|
108 |
+
|
109 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = flag_symbol
|
110 |
+
model_data[AutoEvalColumn.model.name] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
111 |
+
|
112 |
def apply_metadata(leaderboard_data: List[dict]):
|
113 |
get_model_type(leaderboard_data)
|
114 |
get_model_infos_from_hub(leaderboard_data)
|
115 |
+
flag_models(leaderboard_data)
|
src/auto_leaderboard/load_results.py
CHANGED
@@ -102,7 +102,7 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
|
102 |
return result_key, eval_results
|
103 |
|
104 |
|
105 |
-
def get_eval_results(
|
106 |
json_filepaths = []
|
107 |
|
108 |
for root, dir, files in os.walk("eval-results"):
|
@@ -135,7 +135,7 @@ def get_eval_results(is_public) -> List[EvalResult]:
|
|
135 |
return eval_results
|
136 |
|
137 |
|
138 |
-
def get_eval_results_dicts(
|
139 |
-
eval_results = get_eval_results(
|
140 |
|
141 |
return [e.to_dict() for e in eval_results]
|
|
|
102 |
return result_key, eval_results
|
103 |
|
104 |
|
105 |
+
def get_eval_results() -> List[EvalResult]:
|
106 |
json_filepaths = []
|
107 |
|
108 |
for root, dir, files in os.walk("eval-results"):
|
|
|
135 |
return eval_results
|
136 |
|
137 |
|
138 |
+
def get_eval_results_dicts() -> List[Dict]:
|
139 |
+
eval_results = get_eval_results()
|
140 |
|
141 |
return [e.to_dict() for e in eval_results]
|
src/auto_leaderboard/model_metadata_flags.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model name to forum discussion id
|
2 |
+
FLAGGED_MODELS = {
|
3 |
+
"Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
|
4 |
+
"deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207"
|
5 |
+
}
|
src/auto_leaderboard/model_metadata_type.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
-
import
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
from typing import Dict, List
|
7 |
|
8 |
-
from ..utils_display import AutoEvalColumn
|
9 |
|
10 |
@dataclass
|
11 |
class ModelInfo:
|
@@ -24,7 +20,7 @@ class ModelType(Enum):
|
|
24 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
25 |
|
26 |
|
27 |
-
|
28 |
'notstoic/PygmalionCoT-7b': ModelType.IFT,
|
29 |
'aisquared/dlite-v1-355m': ModelType.IFT,
|
30 |
'aisquared/dlite-v1-1_5b': ModelType.IFT,
|
@@ -553,45 +549,3 @@ def model_type_from_str(type):
|
|
553 |
return ModelType.IFT
|
554 |
return ModelType.Unknown
|
555 |
|
556 |
-
|
557 |
-
def get_model_type(leaderboard_data: List[dict]):
|
558 |
-
for model_data in leaderboard_data:
|
559 |
-
request_files = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
|
560 |
-
request_files = glob.glob(request_files)
|
561 |
-
|
562 |
-
request_file = ""
|
563 |
-
if len(request_files) == 1:
|
564 |
-
request_file = request_files[0]
|
565 |
-
elif len(request_files) > 1:
|
566 |
-
request_files = sorted(request_files, reverse=True)
|
567 |
-
for tmp_request_file in request_files:
|
568 |
-
with open(tmp_request_file, "r") as f:
|
569 |
-
req_content = json.load(f)
|
570 |
-
if req_content["status"] == "FINISHED" and req_content["precision"] == model_data["Precision"].split(".")[-1]:
|
571 |
-
request_file = tmp_request_file
|
572 |
-
|
573 |
-
if request_file == "":
|
574 |
-
model_data[AutoEvalColumn.model_type.name] = ""
|
575 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = ""
|
576 |
-
continue
|
577 |
-
|
578 |
-
try:
|
579 |
-
with open(request_file, "r") as f:
|
580 |
-
request = json.load(f)
|
581 |
-
is_delta = request["weight_type"] != "Original"
|
582 |
-
except Exception:
|
583 |
-
is_delta = False
|
584 |
-
|
585 |
-
try:
|
586 |
-
with open(request_file, "r") as f:
|
587 |
-
request = json.load(f)
|
588 |
-
model_type = model_type_from_str(request["model_type"])
|
589 |
-
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
590 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol #+ ("🔺" if is_delta else "")
|
591 |
-
except KeyError:
|
592 |
-
if model_data["model_name_for_query"] in TYPE_METADATA:
|
593 |
-
model_data[AutoEvalColumn.model_type.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
594 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol #+ ("🔺" if is_delta else "")
|
595 |
-
else:
|
596 |
-
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
|
597 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
+
from typing import Dict
|
|
|
|
|
|
|
4 |
|
|
|
5 |
|
6 |
@dataclass
|
7 |
class ModelInfo:
|
|
|
20 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
21 |
|
22 |
|
23 |
+
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
'notstoic/PygmalionCoT-7b': ModelType.IFT,
|
25 |
'aisquared/dlite-v1-355m': ModelType.IFT,
|
26 |
'aisquared/dlite-v1-1_5b': ModelType.IFT,
|
|
|
549 |
return ModelType.IFT
|
550 |
return ModelType.Unknown
|
551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils_display.py
CHANGED
@@ -89,20 +89,22 @@ def make_clickable_model(model_name):
|
|
89 |
link = KOALA_LINK
|
90 |
elif model_name == "oasst-12b":
|
91 |
link = OASST_LINK
|
92 |
-
|
93 |
-
# link = MODEL_PAGE
|
94 |
details_model_name = model_name.replace('/', '__')
|
95 |
details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}"
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
|
107 |
return model_hyperlink(link, model_name) + ' ' + model_hyperlink(details_link, "📑")
|
108 |
|
|
|
89 |
link = KOALA_LINK
|
90 |
elif model_name == "oasst-12b":
|
91 |
link = OASST_LINK
|
92 |
+
|
|
|
93 |
details_model_name = model_name.replace('/', '__')
|
94 |
details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}"
|
95 |
+
|
96 |
+
if not bool(os.getenv("DEBUG", "False")):
|
97 |
+
# We only add these checks when not debugging, as they are extremely slow
|
98 |
+
print(f"details_link: {details_link}")
|
99 |
+
try:
|
100 |
+
check_path = list(API.list_files_info(repo_id=f"open-llm-leaderboard/details_{details_model_name}",
|
101 |
+
paths="README.md",
|
102 |
+
repo_type="dataset"))
|
103 |
+
print(f"check_path: {check_path}")
|
104 |
+
except Exception as err:
|
105 |
+
# No details repo for this model
|
106 |
+
print(f"No details repo for this model: {err}")
|
107 |
+
return model_hyperlink(link, model_name)
|
108 |
|
109 |
return model_hyperlink(link, model_name) + ' ' + model_hyperlink(details_link, "📑")
|
110 |
|