Spaces:
Runtime error
Runtime error
File size: 9,371 Bytes
09c675d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : patch_match.py
# Author : Jiayuan Mao
# Email : maojiayuan@gmail.com
# Date : 01/09/2020
#
# Distributed under terms of the MIT license.
import ctypes
import os.path as osp
from typing import Optional, Union
import numpy as np
from PIL import Image
import os
if os.name!="nt":
# Otherwise, fall back to the subprocess.
import subprocess
print('Compiling and loading c extensions from "{}".'.format(osp.realpath(osp.dirname(__file__))))
# subprocess.check_call(['./travis.sh'], cwd=osp.dirname(__file__))
subprocess.check_call("make clean && make", cwd=osp.dirname(__file__), shell=True)
__all__ = ['set_random_seed', 'set_verbose', 'inpaint', 'inpaint_regularity']
class CShapeT(ctypes.Structure):
_fields_ = [
('width', ctypes.c_int),
('height', ctypes.c_int),
('channels', ctypes.c_int),
]
class CMatT(ctypes.Structure):
_fields_ = [
('data_ptr', ctypes.c_void_p),
('shape', CShapeT),
('dtype', ctypes.c_int)
]
import tempfile
from urllib.request import urlopen, Request
import shutil
from pathlib import Path
from tqdm import tqdm
def download_url_to_file(url, dst, hash_prefix=None, progress=True):
r"""Download object at the given URL to a local path.
Args:
url (string): URL of the object to download
dst (string): Full path where object will be saved, e.g. ``/tmp/temporary_file``
hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with ``hash_prefix``.
Default: None
progress (bool, optional): whether or not to display a progress bar to stderr
Default: True
https://pytorch.org/docs/stable/_modules/torch/hub.html#load_state_dict_from_url
"""
file_size = None
req = Request(url)
u = urlopen(req)
meta = u.info()
if hasattr(meta, 'getheaders'):
content_length = meta.getheaders("Content-Length")
else:
content_length = meta.get_all("Content-Length")
if content_length is not None and len(content_length) > 0:
file_size = int(content_length[0])
# We deliberately save it in a temp file and move it after
# download is complete. This prevents a local working checkpoint
# being overridden by a broken download.
dst = os.path.expanduser(dst)
dst_dir = os.path.dirname(dst)
f = tempfile.NamedTemporaryFile(delete=False, dir=dst_dir)
try:
with tqdm(total=file_size, disable=not progress,
unit='B', unit_scale=True, unit_divisor=1024) as pbar:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
pbar.update(len(buffer))
f.close()
shutil.move(f.name, dst)
finally:
f.close()
if os.path.exists(f.name):
os.remove(f.name)
if os.name!="nt":
PMLIB = ctypes.CDLL(osp.join(osp.dirname(__file__), 'libpatchmatch.so'))
else:
if not os.path.exists(osp.join(osp.dirname(__file__), 'libpatchmatch.dll')):
download_url_to_file(url="https://github.com/lkwq007/PyPatchMatch/releases/download/v0.1/libpatchmatch.dll",dst=osp.join(osp.dirname(__file__), 'libpatchmatch.dll'))
if not os.path.exists(osp.join(osp.dirname(__file__), 'opencv_world460.dll')):
download_url_to_file(url="https://github.com/lkwq007/PyPatchMatch/releases/download/v0.1/opencv_world460.dll",dst=osp.join(osp.dirname(__file__), 'opencv_world460.dll'))
if not os.path.exists(osp.join(osp.dirname(__file__), 'libpatchmatch.dll')):
print("[Dependency Missing] Please download https://github.com/lkwq007/PyPatchMatch/releases/download/v0.1/libpatchmatch.dll and put it into the PyPatchMatch folder")
if not os.path.exists(osp.join(osp.dirname(__file__), 'opencv_world460.dll')):
print("[Dependency Missing] Please download https://github.com/lkwq007/PyPatchMatch/releases/download/v0.1/opencv_world460.dll and put it into the PyPatchMatch folder")
PMLIB = ctypes.CDLL(osp.join(osp.dirname(__file__), 'libpatchmatch.dll'))
PMLIB.PM_set_random_seed.argtypes = [ctypes.c_uint]
PMLIB.PM_set_verbose.argtypes = [ctypes.c_int]
PMLIB.PM_free_pymat.argtypes = [CMatT]
PMLIB.PM_inpaint.argtypes = [CMatT, CMatT, ctypes.c_int]
PMLIB.PM_inpaint.restype = CMatT
PMLIB.PM_inpaint_regularity.argtypes = [CMatT, CMatT, CMatT, ctypes.c_int, ctypes.c_float]
PMLIB.PM_inpaint_regularity.restype = CMatT
PMLIB.PM_inpaint2.argtypes = [CMatT, CMatT, CMatT, ctypes.c_int]
PMLIB.PM_inpaint2.restype = CMatT
PMLIB.PM_inpaint2_regularity.argtypes = [CMatT, CMatT, CMatT, CMatT, ctypes.c_int, ctypes.c_float]
PMLIB.PM_inpaint2_regularity.restype = CMatT
def set_random_seed(seed: int):
PMLIB.PM_set_random_seed(ctypes.c_uint(seed))
def set_verbose(verbose: bool):
PMLIB.PM_set_verbose(ctypes.c_int(verbose))
def inpaint(
image: Union[np.ndarray, Image.Image],
mask: Optional[Union[np.ndarray, Image.Image]] = None,
*,
global_mask: Optional[Union[np.ndarray, Image.Image]] = None,
patch_size: int = 15
) -> np.ndarray:
"""
PatchMatch based inpainting proposed in:
PatchMatch : A Randomized Correspondence Algorithm for Structural Image Editing
C.Barnes, E.Shechtman, A.Finkelstein and Dan B.Goldman
SIGGRAPH 2009
Args:
image (Union[np.ndarray, Image.Image]): the input image, should be 3-channel RGB/BGR.
mask (Union[np.array, Image.Image], optional): the mask of the hole(s) to be filled, should be 1-channel.
If not provided (None), the algorithm will treat all purely white pixels as the holes (255, 255, 255).
global_mask (Union[np.array, Image.Image], optional): the target mask of the output image.
patch_size (int): the patch size for the inpainting algorithm.
Return:
result (np.ndarray): the repaired image, of the same size as the input image.
"""
if isinstance(image, Image.Image):
image = np.array(image)
image = np.ascontiguousarray(image)
assert image.ndim == 3 and image.shape[2] == 3 and image.dtype == 'uint8'
if mask is None:
mask = (image == (255, 255, 255)).all(axis=2, keepdims=True).astype('uint8')
mask = np.ascontiguousarray(mask)
else:
mask = _canonize_mask_array(mask)
if global_mask is None:
ret_pymat = PMLIB.PM_inpaint(np_to_pymat(image), np_to_pymat(mask), ctypes.c_int(patch_size))
else:
global_mask = _canonize_mask_array(global_mask)
ret_pymat = PMLIB.PM_inpaint2(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(global_mask), ctypes.c_int(patch_size))
ret_npmat = pymat_to_np(ret_pymat)
PMLIB.PM_free_pymat(ret_pymat)
return ret_npmat
def inpaint_regularity(
image: Union[np.ndarray, Image.Image],
mask: Optional[Union[np.ndarray, Image.Image]],
ijmap: np.ndarray,
*,
global_mask: Optional[Union[np.ndarray, Image.Image]] = None,
patch_size: int = 15, guide_weight: float = 0.25
) -> np.ndarray:
if isinstance(image, Image.Image):
image = np.array(image)
image = np.ascontiguousarray(image)
assert isinstance(ijmap, np.ndarray) and ijmap.ndim == 3 and ijmap.shape[2] == 3 and ijmap.dtype == 'float32'
ijmap = np.ascontiguousarray(ijmap)
assert image.ndim == 3 and image.shape[2] == 3 and image.dtype == 'uint8'
if mask is None:
mask = (image == (255, 255, 255)).all(axis=2, keepdims=True).astype('uint8')
mask = np.ascontiguousarray(mask)
else:
mask = _canonize_mask_array(mask)
if global_mask is None:
ret_pymat = PMLIB.PM_inpaint_regularity(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(ijmap), ctypes.c_int(patch_size), ctypes.c_float(guide_weight))
else:
global_mask = _canonize_mask_array(global_mask)
ret_pymat = PMLIB.PM_inpaint2_regularity(np_to_pymat(image), np_to_pymat(mask), np_to_pymat(global_mask), np_to_pymat(ijmap), ctypes.c_int(patch_size), ctypes.c_float(guide_weight))
ret_npmat = pymat_to_np(ret_pymat)
PMLIB.PM_free_pymat(ret_pymat)
return ret_npmat
def _canonize_mask_array(mask):
if isinstance(mask, Image.Image):
mask = np.array(mask)
if mask.ndim == 2 and mask.dtype == 'uint8':
mask = mask[..., np.newaxis]
assert mask.ndim == 3 and mask.shape[2] == 1 and mask.dtype == 'uint8'
return np.ascontiguousarray(mask)
dtype_pymat_to_ctypes = [
ctypes.c_uint8,
ctypes.c_int8,
ctypes.c_uint16,
ctypes.c_int16,
ctypes.c_int32,
ctypes.c_float,
ctypes.c_double,
]
dtype_np_to_pymat = {
'uint8': 0,
'int8': 1,
'uint16': 2,
'int16': 3,
'int32': 4,
'float32': 5,
'float64': 6,
}
def np_to_pymat(npmat):
assert npmat.ndim == 3
return CMatT(
ctypes.cast(npmat.ctypes.data, ctypes.c_void_p),
CShapeT(npmat.shape[1], npmat.shape[0], npmat.shape[2]),
dtype_np_to_pymat[str(npmat.dtype)]
)
def pymat_to_np(pymat):
npmat = np.ctypeslib.as_array(
ctypes.cast(pymat.data_ptr, ctypes.POINTER(dtype_pymat_to_ctypes[pymat.dtype])),
(pymat.shape.height, pymat.shape.width, pymat.shape.channels)
)
ret = np.empty(npmat.shape, npmat.dtype)
ret[:] = npmat
return ret
|