Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import feedparser
|
4 |
from datetime import datetime, timedelta
|
5 |
import pytz
|
@@ -8,133 +8,57 @@ import hashlib
|
|
8 |
import threading
|
9 |
import logging
|
10 |
|
|
|
|
|
|
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
"Default (facebook/bart-large-cnn)": "facebook/bart-large-cnn",
|
18 |
-
"Free Model (distilbart-cnn-6-6)": "sshleifer/distilbart-cnn-6-6"
|
19 |
-
}
|
20 |
-
CACHE_SIZE = 500
|
21 |
-
RSS_FETCH_INTERVAL = timedelta(hours=8)
|
22 |
-
ARTICLE_LIMIT = 5
|
23 |
-
|
24 |
-
# Updated categories and news sources
|
25 |
-
CATEGORIES = ["Technology", "Business", "Science", "World News", "Sports", "Health"]
|
26 |
-
NEWS_SOURCES = {
|
27 |
-
"Technology": {
|
28 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Technology.xml",
|
29 |
-
"reutersagency": "https://www.reutersagency.com/feed/?best-topics=tech&post_type=best",
|
30 |
-
"alarabiya arabic": "https://www.alarabiya.net/feed/rss2/ar/technology.xml",
|
31 |
-
},
|
32 |
-
"Business": {
|
33 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Business.xml",
|
34 |
-
"reutersagency": "https://www.reutersagency.com/feed/?best-topics=business-finance&post_type=best",
|
35 |
-
"alwatanvoice arabic": "https://feeds.alwatanvoice.com/ar/business.xml",
|
36 |
-
},
|
37 |
-
"Science": {
|
38 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Science.xml"
|
39 |
-
},
|
40 |
-
"World News": {
|
41 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/World.xml",
|
42 |
-
"BBC": "http://feeds.bbci.co.uk/news/world/rss.xml",
|
43 |
-
"CNN": "http://rss.cnn.com/rss/edition_world.rss",
|
44 |
-
"reutersagency": "https://www.reutersagency.com/feed/?taxonomy=best-regions&post_type=best",
|
45 |
-
"france24 arabic": "https://www.france24.com/ar/rss",
|
46 |
-
"aljazera arabic": "https://www.aljazeera.net/aljazeerarss/a7c186be-1baa-4bd4-9d80-a84db769f779/73d0e1b4-532f-45ef-b135-bfdff8b8cab9",
|
47 |
-
},
|
48 |
-
"Sports": {
|
49 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Sports.xml",
|
50 |
-
"reutersagency": "https://www.reutersagency.com/feed/?best-topics=sports&post_type=best",
|
51 |
-
"france24 arabic": "https://www.france24.com/ar/%D8%B1%D9%8A%D8%A7%D8%B6%D8%A9/rss",
|
52 |
-
},
|
53 |
-
"Health": {
|
54 |
-
"TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Health.xml",
|
55 |
-
"politico": "http://rss.politico.com/healthcare.xml",
|
56 |
-
"reutersagency": "https://www.reutersagency.com/feed/?best-topics=health&post_type=best"
|
57 |
-
},
|
58 |
-
}
|
59 |
-
|
60 |
-
class NewsCache:
|
61 |
-
def __init__(self, size):
|
62 |
-
self.cache = {}
|
63 |
-
self.size = size
|
64 |
-
self.lock = threading.Lock()
|
65 |
-
|
66 |
-
def get(self, key):
|
67 |
-
with self.lock:
|
68 |
-
return self.cache.get(key)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
del self.cache[oldest_key]
|
75 |
-
self.cache[key] = value
|
76 |
-
|
77 |
-
cache = NewsCache(CACHE_SIZE)
|
78 |
-
|
79 |
-
def fetch_rss_news(tech_sources, business_sources, science_sources, world_sources, sports_sources, health_sources):
|
80 |
-
articles = []
|
81 |
-
cutoff_time = datetime.now(pytz.UTC) - RSS_FETCH_INTERVAL
|
82 |
-
|
83 |
-
# Create a mapping of selected sources
|
84 |
-
category_sources = {
|
85 |
-
"Technology": tech_sources if tech_sources else [],
|
86 |
-
"Business": business_sources if business_sources else [],
|
87 |
-
"Science": science_sources if science_sources else [],
|
88 |
-
"World News": world_sources if world_sources else [],
|
89 |
-
"Sports": sports_sources if sports_sources else [],
|
90 |
-
"Health": health_sources if health_sources else []
|
91 |
-
}
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
})
|
124 |
-
except (AttributeError, TypeError) as e:
|
125 |
-
logger.error(f"Error processing entry: {str(e)}")
|
126 |
-
continue
|
127 |
-
|
128 |
-
except Exception as e:
|
129 |
-
logger.error(f"Error fetching feed from {url}: {str(e)}")
|
130 |
-
continue
|
131 |
-
|
132 |
-
logger.info(f"Total articles fetched: {len(articles)}")
|
133 |
-
articles = sorted(articles, key=lambda x: x["published"], reverse=True)[:ARTICLE_LIMIT]
|
134 |
-
return articles
|
135 |
-
|
136 |
-
def summarize_text(text, model_name):
|
137 |
try:
|
|
|
|
|
|
|
|
|
|
|
138 |
summarizer = pipeline("summarization", model=model_name, device=-1)
|
139 |
content_hash = hashlib.md5(text.encode()).hexdigest()
|
140 |
cached_summary = cache.get(content_hash)
|
@@ -156,7 +80,7 @@ def summarize_articles(articles, model_name):
|
|
156 |
summaries = []
|
157 |
for article in articles:
|
158 |
content = article["description"]
|
159 |
-
summary = summarize_text(content, model_name)
|
160 |
summaries.append(f"""
|
161 |
π° {article['title']}
|
162 |
- π Category: {article['category']}
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSeq2SeqGeneration, AutoTokenizer
|
3 |
import feedparser
|
4 |
from datetime import datetime, timedelta
|
5 |
import pytz
|
|
|
8 |
import threading
|
9 |
import logging
|
10 |
|
11 |
+
# Add this to your imports
|
12 |
+
from transformers import MarianMTModel, MarianTokenizer
|
13 |
+
|
14 |
# Set up logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# Add translation model configuration
|
19 |
+
TRANSLATION_MODEL = "Helsinki-NLP/opus-mt-ar-en"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
class Translator:
|
22 |
+
def __init__(self):
|
23 |
+
self.model = None
|
24 |
+
self.tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def load_model(self):
|
27 |
+
if self.model is None:
|
28 |
+
try:
|
29 |
+
self.tokenizer = MarianTokenizer.from_pretrained(TRANSLATION_MODEL)
|
30 |
+
self.model = MarianMTModel.from_pretrained(TRANSLATION_MODEL)
|
31 |
+
logger.info("Translation model loaded successfully")
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(f"Error loading translation model: {str(e)}")
|
34 |
+
raise
|
35 |
+
|
36 |
+
def translate(self, text):
|
37 |
+
try:
|
38 |
+
self.load_model()
|
39 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
40 |
+
translated = self.model.generate(**inputs)
|
41 |
+
return self.tokenizer.decode(translated[0], skip_special_tokens=True)
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Translation error: {str(e)}")
|
44 |
+
return text
|
45 |
+
|
46 |
+
# Initialize translator
|
47 |
+
translator = Translator()
|
48 |
+
|
49 |
+
# Rest of your existing configurations...
|
50 |
+
[Your existing SUMMARIZER_MODELS, CACHE_SIZE, RSS_FETCH_INTERVAL, ARTICLE_LIMIT, CATEGORIES, and NEWS_SOURCES definitions]
|
51 |
+
|
52 |
+
def is_arabic_source(source_name):
|
53 |
+
return any(arabic_indicator in source_name.lower() for arabic_indicator in ['arabic', 'alarabiya', 'aljazeera', 'alwatanvoice'])
|
54 |
+
|
55 |
+
def summarize_text(text, model_name, source):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
+
# Translate if it's an Arabic source
|
58 |
+
if is_arabic_source(source):
|
59 |
+
logger.info("Translating Arabic content before summarization")
|
60 |
+
text = translator.translate(text)
|
61 |
+
|
62 |
summarizer = pipeline("summarization", model=model_name, device=-1)
|
63 |
content_hash = hashlib.md5(text.encode()).hexdigest()
|
64 |
cached_summary = cache.get(content_hash)
|
|
|
80 |
summaries = []
|
81 |
for article in articles:
|
82 |
content = article["description"]
|
83 |
+
summary = summarize_text(content, model_name, article['source'])
|
84 |
summaries.append(f"""
|
85 |
π° {article['title']}
|
86 |
- π Category: {article['category']}
|