|
import numpy as np |
|
import torch |
|
from torch.autograd import Variable |
|
import sys |
|
|
|
sys.path.append("./") |
|
from align.get_nets import PNet, RNet, ONet |
|
from align.box_utils import nms, calibrate_box, get_image_boxes, convert_to_square |
|
from align.first_stage import run_first_stage |
|
|
|
|
|
def detect_faces( |
|
image, |
|
min_face_size=20.0, |
|
thresholds=[0.6, 0.7, 0.8], |
|
nms_thresholds=[0.7, 0.7, 0.7], |
|
): |
|
""" |
|
Arguments: |
|
image: an instance of PIL.Image. |
|
min_face_size: a float number. |
|
thresholds: a list of length 3. |
|
nms_thresholds: a list of length 3. |
|
|
|
Returns: |
|
two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], |
|
bounding boxes and facial landmarks. |
|
""" |
|
|
|
pnet = PNet() |
|
rnet = RNet() |
|
onet = ONet() |
|
onet.eval() |
|
|
|
|
|
width, height = image.size |
|
min_length = min(height, width) |
|
|
|
min_detection_size = 12 |
|
factor = 0.707 |
|
|
|
|
|
scales = [] |
|
|
|
|
|
|
|
|
|
m = min_detection_size / min_face_size |
|
min_length *= m |
|
|
|
factor_count = 0 |
|
while min_length > min_detection_size: |
|
scales.append(m * factor**factor_count) |
|
min_length *= factor |
|
factor_count += 1 |
|
|
|
|
|
|
|
|
|
bounding_boxes = [] |
|
|
|
|
|
for s in scales: |
|
boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0]) |
|
bounding_boxes.append(boxes) |
|
|
|
|
|
bounding_boxes = [i for i in bounding_boxes if i is not None] |
|
bounding_boxes = np.vstack(bounding_boxes) |
|
|
|
keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) |
|
bounding_boxes = bounding_boxes[keep] |
|
|
|
|
|
bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) |
|
|
|
|
|
bounding_boxes = convert_to_square(bounding_boxes) |
|
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) |
|
|
|
|
|
|
|
img_boxes = get_image_boxes(bounding_boxes, image, size=24) |
|
img_boxes = Variable(torch.FloatTensor(img_boxes), volatile=True) |
|
output = rnet(img_boxes) |
|
offsets = output[0].data.numpy() |
|
probs = output[1].data.numpy() |
|
|
|
keep = np.where(probs[:, 1] > thresholds[1])[0] |
|
bounding_boxes = bounding_boxes[keep] |
|
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) |
|
offsets = offsets[keep] |
|
|
|
keep = nms(bounding_boxes, nms_thresholds[1]) |
|
bounding_boxes = bounding_boxes[keep] |
|
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) |
|
bounding_boxes = convert_to_square(bounding_boxes) |
|
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) |
|
|
|
|
|
|
|
img_boxes = get_image_boxes(bounding_boxes, image, size=48) |
|
if len(img_boxes) == 0: |
|
return [], [] |
|
img_boxes = Variable(torch.FloatTensor(img_boxes), volatile=True) |
|
output = onet(img_boxes) |
|
landmarks = output[0].data.numpy() |
|
offsets = output[1].data.numpy() |
|
probs = output[2].data.numpy() |
|
|
|
keep = np.where(probs[:, 1] > thresholds[2])[0] |
|
bounding_boxes = bounding_boxes[keep] |
|
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) |
|
offsets = offsets[keep] |
|
landmarks = landmarks[keep] |
|
|
|
|
|
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 |
|
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 |
|
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] |
|
landmarks[:, 0:5] = ( |
|
np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] |
|
) |
|
landmarks[:, 5:10] = ( |
|
np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] |
|
) |
|
|
|
bounding_boxes = calibrate_box(bounding_boxes, offsets) |
|
keep = nms(bounding_boxes, nms_thresholds[2], mode="min") |
|
bounding_boxes = bounding_boxes[keep] |
|
landmarks = landmarks[keep] |
|
|
|
return bounding_boxes, landmarks |
|
|