Jacob Logas
commited on
Commit
·
13bbd52
1
Parent(s):
23f9960
Update
Browse files- app.py +19 -13
- util/attack_utils.py +6 -4
app.py
CHANGED
@@ -11,7 +11,6 @@ import torchvision.transforms as transforms
|
|
11 |
import spaces
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
print(device)
|
15 |
to_tensor = transforms.ToTensor()
|
16 |
|
17 |
eps = 0.05
|
@@ -40,20 +39,27 @@ direction = 1
|
|
40 |
crop_size = 112
|
41 |
scale = crop_size / 112.0
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
input_size,
|
46 |
-
model_roots,
|
47 |
-
kernel_size_gf,
|
48 |
-
sigma_gf,
|
49 |
-
combination,
|
50 |
-
using_subspace,
|
51 |
-
V_reduction_root,
|
52 |
-
)
|
53 |
|
54 |
|
55 |
@spaces.GPU
|
56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
img = Image.fromarray(img)
|
58 |
reference = get_reference_facial_points(default_square=True) * scale
|
59 |
h, w, c = np.array(img).shape
|
@@ -104,7 +110,7 @@ def protect(img):
|
|
104 |
theta_warp=theta,
|
105 |
V_reduction=V_reduction,
|
106 |
)
|
107 |
-
img_attacked =
|
108 |
|
109 |
img_attacked_pil = transforms.ToPILImage()(img_attacked[0])
|
110 |
return img_attacked_pil
|
|
|
11 |
import spaces
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
14 |
to_tensor = transforms.ToTensor()
|
15 |
|
16 |
eps = 0.05
|
|
|
39 |
crop_size = 112
|
40 |
scale = crop_size / 112.0
|
41 |
|
42 |
+
for root in model_roots:
|
43 |
+
torch.hub.load_state_dict_from_url(root, map_location=device, progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
@spaces.GPU
|
47 |
+
def execute(attack, tensor_img, dir_vec):
|
48 |
+
return attack.execute(tensor_img, dir_vec, direction).detach().cpu()
|
49 |
+
|
50 |
+
|
51 |
+
def protect(img, progress=gr.Progress(track_tqdm=True)):
|
52 |
+
models_attack, V_reduction, dim = prepare_models(
|
53 |
+
model_backbones,
|
54 |
+
input_size,
|
55 |
+
model_roots,
|
56 |
+
kernel_size_gf,
|
57 |
+
sigma_gf,
|
58 |
+
combination,
|
59 |
+
using_subspace,
|
60 |
+
V_reduction_root,
|
61 |
+
)
|
62 |
+
|
63 |
img = Image.fromarray(img)
|
64 |
reference = get_reference_facial_points(default_square=True) * scale
|
65 |
h, w, c = np.array(img).shape
|
|
|
110 |
theta_warp=theta,
|
111 |
V_reduction=V_reduction,
|
112 |
)
|
113 |
+
img_attacked = execute(attack, tensor_img, dir_vec)
|
114 |
|
115 |
img_attacked_pil = transforms.ToPILImage()(img_attacked[0])
|
116 |
return img_attacked_pil
|
util/attack_utils.py
CHANGED
@@ -6,8 +6,8 @@ from torch.autograd import Variable
|
|
6 |
from util.feature_extraction_utils import warp_image, normalize_batch
|
7 |
from util.prepare_utils import get_ensemble, extract_features
|
8 |
from lpips_pytorch import LPIPS
|
|
|
9 |
|
10 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
tensor_transform = transforms.ToTensor()
|
12 |
pil_transform = transforms.ToPILImage()
|
13 |
|
@@ -51,9 +51,11 @@ class Attack(nn.Module):
|
|
51 |
self.warp = warp
|
52 |
self.theta_warp = theta_warp
|
53 |
if self.attack_type == "lpips":
|
54 |
-
self.lpips_loss = LPIPS(self.net_type)
|
55 |
|
56 |
def execute(self, images, dir_vec, direction):
|
|
|
|
|
57 |
images = Variable(images).to(device)
|
58 |
dir_vec = dir_vec.to(device)
|
59 |
# take norm wrt dim
|
@@ -76,7 +78,7 @@ class Attack(nn.Module):
|
|
76 |
images.detach().clone() + noise_uniform, requires_grad=True
|
77 |
).to(device)
|
78 |
|
79 |
-
for i in
|
80 |
adv_features = extract_features(
|
81 |
adv_images, self.extractor_ens, self.dim
|
82 |
).to(device)
|
@@ -115,10 +117,10 @@ class Attack(nn.Module):
|
|
115 |
else:
|
116 |
adv_images[dist > dist_old] = adv_images_old[dist > dist_old]
|
117 |
dist[dist > dist_old] = dist_old[dist > dist_old]
|
118 |
-
|
119 |
return adv_images.detach().cpu()
|
120 |
|
121 |
def lpips_reg(self, images, adv_images):
|
|
|
122 |
if self.warp:
|
123 |
face_adv = warp_image(adv_images, self.theta_warp)
|
124 |
lpips_out = self.lpips_loss(
|
|
|
6 |
from util.feature_extraction_utils import warp_image, normalize_batch
|
7 |
from util.prepare_utils import get_ensemble, extract_features
|
8 |
from lpips_pytorch import LPIPS
|
9 |
+
from tqdm import trange
|
10 |
|
|
|
11 |
tensor_transform = transforms.ToTensor()
|
12 |
pil_transform = transforms.ToPILImage()
|
13 |
|
|
|
51 |
self.warp = warp
|
52 |
self.theta_warp = theta_warp
|
53 |
if self.attack_type == "lpips":
|
54 |
+
self.lpips_loss = LPIPS(self.net_type)
|
55 |
|
56 |
def execute(self, images, dir_vec, direction):
|
57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
+
self.lpips_loss.to(device)
|
59 |
images = Variable(images).to(device)
|
60 |
dir_vec = dir_vec.to(device)
|
61 |
# take norm wrt dim
|
|
|
78 |
images.detach().clone() + noise_uniform, requires_grad=True
|
79 |
).to(device)
|
80 |
|
81 |
+
for i in trange(self.n_iters):
|
82 |
adv_features = extract_features(
|
83 |
adv_images, self.extractor_ens, self.dim
|
84 |
).to(device)
|
|
|
117 |
else:
|
118 |
adv_images[dist > dist_old] = adv_images_old[dist > dist_old]
|
119 |
dist[dist > dist_old] = dist_old[dist > dist_old]
|
|
|
120 |
return adv_images.detach().cpu()
|
121 |
|
122 |
def lpips_reg(self, images, adv_images):
|
123 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
124 |
if self.warp:
|
125 |
face_adv = warp_image(adv_images, self.theta_warp)
|
126 |
lpips_out = self.lpips_loss(
|