import torch import torch.nn as nn from torch.nn import ( Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, ) from collections import namedtuple # Support: ['IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152'] class Flatten(Module): def forward(self, input): return input.view(input.size(0), -1) def l2_norm(input, axis=1): norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output class SEModule(Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = AdaptiveAvgPool2d(1) self.fc1 = Conv2d( channels, channels // reduction, kernel_size=1, padding=0, bias=False ) nn.init.xavier_uniform_(self.fc1.weight.data) self.relu = ReLU(inplace=True) self.fc2 = Conv2d( channels // reduction, channels, kernel_size=1, padding=0, bias=False ) self.sigmoid = Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x class bottleneck_IR(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth), ) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth), ) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class bottleneck_IR_SE(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR_SE, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth), ) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth), SEModule(depth, 16), ) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): """A named tuple describing a ResNet block.""" def get_block(in_channel, depth, num_units, stride=2): return [Bottleneck(in_channel, depth, stride)] + [ Bottleneck(depth, depth, 1) for i in range(num_units - 1) ] def get_blocks(num_layers): if num_layers == 50: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=4), get_block(in_channel=128, depth=256, num_units=14), get_block(in_channel=256, depth=512, num_units=3), ] elif num_layers == 100: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=13), get_block(in_channel=128, depth=256, num_units=30), get_block(in_channel=256, depth=512, num_units=3), ] elif num_layers == 152: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=8), get_block(in_channel=128, depth=256, num_units=36), get_block(in_channel=256, depth=512, num_units=3), ] return blocks class Backbone(Module): def __init__(self, input_size, num_layers, mode="ir"): super(Backbone, self).__init__() assert input_size[0] in [ 112, 224, ], "input_size should be [112, 112] or [224, 224]" assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" blocks = get_blocks(num_layers) if mode == "ir": unit_module = bottleneck_IR elif mode == "ir_se": unit_module = bottleneck_IR_SE self.input_layer = Sequential( Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) ) if input_size[0] == 112: self.output_layer = Sequential( BatchNorm2d(512), Dropout(), Flatten(), Linear(512 * 7 * 7, 512), BatchNorm1d(512), ) else: self.output_layer = Sequential( BatchNorm2d(512), Dropout(), Flatten(), Linear(512 * 14 * 14, 512), BatchNorm1d(512), ) modules = [] for block in blocks: for bottleneck in block: modules.append( unit_module( bottleneck.in_channel, bottleneck.depth, bottleneck.stride ) ) self.body = Sequential(*modules) self._initialize_weights() def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_layer(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm1d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() def IR_50(input_size): """Constructs a ir-50 model.""" model = Backbone(input_size, 50, "ir") return model def IR_101(input_size): """Constructs a ir-101 model.""" model = Backbone(input_size, 100, "ir") return model def IR_152(input_size): """Constructs a ir-152 model.""" model = Backbone(input_size, 152, "ir") return model def IR_SE_50(input_size): """Constructs a ir_se-50 model.""" model = Backbone(input_size, 50, "ir_se") return model def IR_SE_101(input_size): """Constructs a ir_se-101 model.""" model = Backbone(input_size, 100, "ir_se") return model def IR_SE_152(input_size): """Constructs a ir_se-152 model.""" model = Backbone(input_size, 152, "ir_se") return model