from dataclasses import dataclass from enum import Enum @dataclass class Task: benchmark: str metric: str col_name: str # Init: to update with your specific keys class Tasks(Enum): # task_key in the json file, metric_key in the json file, name to display in the leaderboard task0 = Task("logiqa", "delta_abs", "LogiQA Δ") task1 = Task("logiqa2", "delta_abs", "LogiQA2 Δ") task2 = Task("lsat-ar", "delta_abs", "LSAT-ar Δ") task3 = Task("lsat-lr", "delta_abs", "LSAT-lr Δ") task4 = Task("lsat-rc", "delta_abs", "LSAT-rc Δ") #METRICS = list(set([task.value.metric for task in Tasks])) # Your leaderboard name TITLE = """

/\/   Open CoT Leaderboard

""" # What does your leaderboard evaluate? INTRODUCTION_TEXT = """ Intro text """ # Which evaluations are you running? how can people reproduce what you have? LLM_BENCHMARKS_TEXT = f""" ## How it works ## Reproducibility To reproduce our results, here is the commands you can run: """ EVALUATION_QUEUE_TEXT = """ ## Some good practices before submitting a model ### 1) Make sure you can load your model and tokenizer with `vLLM`: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="/") outputs = llm.generate(prompts, sampling_params) ``` If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. Note: make sure your model is public! ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! ### 3) Make sure your model has an open license! This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 ### 4) Fill up your model card When we add extra information about models to the leaderboard, it will be automatically taken from the model card ## Your model is stuck in the pending queue? We're populating the Open CoT Leaderboard step by step. The idea is to grow a diverse and informative sample of the LLM space. Plus, with limited compute, we're currently prioritizing models that are popular, promising, and relatively small. """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r""" """