File size: 9,872 Bytes
1f39cf9
 
 
 
61ac46b
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac46b
1f39cf9
 
 
61ac46b
 
 
 
 
 
 
 
1f39cf9
 
 
 
 
 
 
61ac46b
1f39cf9
 
61ac46b
 
1f39cf9
61ac46b
 
 
 
 
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e32648c
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac46b
89f6983
 
 
 
61ac46b
 
1f39cf9
61ac46b
1f39cf9
61ac46b
1f39cf9
61ac46b
1f39cf9
61ac46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gc
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from models import torch_device
from transformers import SamModel, SamProcessor
import utils
import cv2
from scipy import ndimage

def load_sam():
    sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(torch_device)
    sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")

    sam_model_dict = dict(
        sam_model = sam_model, sam_processor = sam_processor
    )

    return sam_model_dict

# Not fully backward compatible with the previous implementation
# Reference: lmdv2/notebooks/gen_masked_latents_multi_object_ref_ca_loss_modular.ipynb
def sam(sam_model_dict, image, input_points=None, input_boxes=None, target_mask_shape=None, return_numpy=True):
    """target_mask_shape: (h, w)"""
    sam_model, sam_processor = sam_model_dict['sam_model'], sam_model_dict['sam_processor']
    
    if input_boxes and isinstance(input_boxes[0], tuple):
        # Convert tuple to list
        input_boxes = [list(input_box) for input_box in input_boxes]
        
    if input_boxes and input_boxes[0] and isinstance(input_boxes[0][0], tuple):
        # Convert tuple to list
        input_boxes = [[list(input_box) for input_box in input_boxes_item] for input_boxes_item in input_boxes]
    
    with torch.no_grad():
        with torch.autocast(torch_device):
            inputs = sam_processor(image, input_points=input_points, input_boxes=input_boxes, return_tensors="pt").to(torch_device)
            outputs = sam_model(**inputs)
        masks = sam_processor.image_processor.post_process_masks(
            outputs.pred_masks.cpu().float(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
        )
        conf_scores = outputs.iou_scores.cpu().numpy()[0,0]
        del inputs, outputs
    
    gc.collect()
    torch.cuda.empty_cache()
    
    if return_numpy:
        masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool).numpy() for masks_item in masks]
    else:
        masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool) for masks_item in masks]

    return masks, conf_scores

def sam_point_input(sam_model_dict, image, input_points, **kwargs):
    return sam(sam_model_dict, image, input_points=input_points, **kwargs)
    
def sam_box_input(sam_model_dict, image, input_boxes, **kwargs):
    return sam(sam_model_dict, image, input_boxes=input_boxes, **kwargs)

def get_iou_with_resize(mask, masks, masks_shape):
    masks = np.array([cv2.resize(mask.astype(np.uint8) * 255, masks_shape[::-1], cv2.INTER_LINEAR).astype(bool) for mask in masks])
    return utils.iou(mask, masks)

def select_mask(masks, conf_scores, coarse_ious=None, rule="largest_over_conf", discourage_mask_below_confidence=0.85, discourage_mask_below_coarse_iou=0.2, verbose=False):
    """masks: numpy bool array"""
    mask_sizes = masks.sum(axis=(1, 2))
    
    # Another possible rule: iou with the attention mask
    if rule == "largest_over_conf":
        # Use the largest segmentation
        # Discourage selecting masks with conf too low or coarse iou is too low
        max_mask_size = np.max(mask_sizes)
        if coarse_ious is not None:
            scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size - (coarse_ious < discourage_mask_below_coarse_iou) * max_mask_size
        else:
            scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size
        if verbose:
            print(f"mask_sizes: {mask_sizes}, scores: {scores}")
    else:
        raise ValueError(f"Unknown rule: {rule}")

    mask_id = np.argmax(scores)
    mask = masks[mask_id]
    
    selection_conf = conf_scores[mask_id]
    
    if coarse_ious is not None:
        selection_coarse_iou = coarse_ious[mask_id]
    else:
        selection_coarse_iou = None

    if verbose:
        # print(f"Confidences: {conf_scores}")
        print(f"Selected a mask with confidence: {selection_conf}, coarse_iou: {selection_coarse_iou}")

    if verbose:
        plt.figure(figsize=(10, 8))
        # plt.suptitle("After SAM")
        for ind in range(3):
            plt.subplot(1, 3, ind+1)
            # This is obtained before resize.
            plt.title(f"Mask {ind}, score {scores[ind]}, conf {conf_scores[ind]:.2f}, iou {coarse_ious[ind] if coarse_ious is not None else None:.2f}")
            plt.imshow(masks[ind])
        plt.tight_layout()
        plt.show()
        plt.close()

    return mask, selection_conf

def preprocess_mask(token_attn_np_smooth, mask_th, n_erode_dilate_mask=0):
    token_attn_np_smooth_normalized = token_attn_np_smooth - token_attn_np_smooth.min()
    token_attn_np_smooth_normalized /= token_attn_np_smooth_normalized.max()
    mask_thresholded = token_attn_np_smooth_normalized > mask_th
    
    if n_erode_dilate_mask:
        mask_thresholded = ndimage.binary_erosion(mask_thresholded, iterations=n_erode_dilate_mask)
        mask_thresholded = ndimage.binary_dilation(mask_thresholded, iterations=n_erode_dilate_mask)
    
    return mask_thresholded

# The overall pipeline to refine the attention mask
def sam_refine_attn(sam_input_image, token_attn_np, model_dict, height, width, H, W, use_box_input, gaussian_sigma, mask_th_for_box, n_erode_dilate_mask_for_box, mask_th_for_point, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose):
    
    # token_attn_np is for visualizations
    token_attn_np_smooth = ndimage.gaussian_filter(token_attn_np, sigma=gaussian_sigma)

    # (w, h)
    mask_size_scale = height // token_attn_np_smooth.shape[1], width // token_attn_np_smooth.shape[0]

    if use_box_input:
        # box input
        mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_box, n_erode_dilate_mask=n_erode_dilate_mask_for_box)

        input_boxes = utils.binary_mask_to_box(mask_binary, w_scale=mask_size_scale[0], h_scale=mask_size_scale[1])
        input_boxes = [input_boxes]

        masks, conf_scores = sam_box_input(model_dict, image=sam_input_image, input_boxes=input_boxes, target_mask_shape=(H, W))
    else:
        # point input
        mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_point, n_erode_dilate_mask=0)

        # Uses the max coordinate only
        max_coord = np.unravel_index(token_attn_np_smooth.argmax(), token_attn_np_smooth.shape)
        # print("max_coord:", max_coord)
        input_points = [[[max_coord[1] * mask_size_scale[1], max_coord[0] * mask_size_scale[0]]]]

        masks, conf_scores = sam_point_input(model_dict, image=sam_input_image, input_points=input_points, target_mask_shape=(H, W))
        
    if verbose:
        plt.title("Coarse binary mask (for box for box input and for iou)")
        plt.imshow(mask_binary)
        plt.show()
    
    coarse_ious = get_iou_with_resize(mask_binary, masks, masks_shape=mask_binary.shape)

    mask_selected, conf_score_selected = select_mask(masks, conf_scores, coarse_ious=coarse_ious, 
                                                         rule="largest_over_conf", 
                                                         discourage_mask_below_confidence=discourage_mask_below_confidence, 
                                                         discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
                                                         verbose=True)

    return mask_selected, conf_score_selected

def sam_refine_box(sam_input_image, box, *args, **kwargs):
    # One image with one box
    sam_input_images, boxes = [sam_input_image], [[box]]
    mask_selected_batched_list, conf_score_selected_batched_list = sam_refine_boxes(sam_input_images, boxes, *args, **kwargs)
    return mask_selected_batched_list[0][0], conf_score_selected_batched_list[0][0]

def sam_refine_boxes(sam_input_images, boxes, model_dict, height, width, H, W, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose):
    # (w, h)
    input_boxes = [[utils.scale_proportion(box, H=height, W=width) for box in boxes_item] for boxes_item in boxes]

    masks, conf_scores = sam_box_input(model_dict, image=sam_input_images, input_boxes=input_boxes, target_mask_shape=(H, W))
    
    mask_selected_batched_list, conf_score_selected_batched_list = [], []
    
    for boxes_item, masks_item in zip(boxes, masks):
        mask_selected_list, conf_score_selected_list = [], []
        for box, three_masks in zip(boxes_item, masks_item):
            mask_binary = utils.proportion_to_mask(box, H, W, return_np=True)
            if verbose:
                # Also the box is the input for SAM
                plt.title("Binary mask from input box (for iou)")
                plt.imshow(mask_binary)
                plt.show()
                        
            coarse_ious = get_iou_with_resize(mask_binary, three_masks, masks_shape=mask_binary.shape)

            mask_selected, conf_score_selected = select_mask(three_masks, conf_scores, coarse_ious=coarse_ious, 
                                                                rule="largest_over_conf", 
                                                                discourage_mask_below_confidence=discourage_mask_below_confidence, 
                                                                discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
                                                                verbose=True)

            mask_selected_list.append(mask_selected)
            conf_score_selected_list.append(conf_score_selected)
        mask_selected_batched_list.append(mask_selected_list)
        conf_score_selected_batched_list.append(conf_score_selected_list)
    
    return mask_selected_batched_list, conf_score_selected_batched_list