Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from . import utils | |
from utils import torch_device | |
import matplotlib.pyplot as plt | |
def get_unscaled_latents(batch_size, in_channels, height, width, generator, dtype): | |
""" | |
in_channels: often obtained with `unet.config.in_channels` | |
""" | |
# Obtain with torch.float32 and cast to float16 if needed | |
# Directly obtaining latents in float16 will lead to different latents | |
latents_base = torch.randn( | |
(batch_size, in_channels, height // 8, width // 8), | |
generator=generator, dtype=dtype | |
).to(torch_device, dtype=dtype) | |
return latents_base | |
def get_scaled_latents(batch_size, in_channels, height, width, generator, dtype, scheduler): | |
latents_base = get_unscaled_latents(batch_size, in_channels, height, width, generator, dtype) | |
latents_base = latents_base * scheduler.init_noise_sigma | |
return latents_base | |
def blend_latents(latents_bg, latents_fg, fg_mask, fg_blending_ratio=0.01): | |
""" | |
in_channels: often obtained with `unet.config.in_channels` | |
""" | |
assert not torch.allclose(latents_bg, latents_fg), "latents_bg should be independent with latents_fg" | |
dtype = latents_bg.dtype | |
latents = latents_bg * (1. - fg_mask) + (latents_bg * np.sqrt(1. - fg_blending_ratio) + latents_fg * np.sqrt(fg_blending_ratio)) * fg_mask | |
latents = latents.to(dtype=dtype) | |
return latents | |
def compose_latents(model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, latents_bg=None, bg_seed=None, compose_box_to_bg=True, use_fast_schedule=False, fast_after_steps=None): | |
unet, scheduler, dtype = model_dict.unet, model_dict.scheduler, model_dict.dtype | |
if latents_bg is None: | |
generator = torch.manual_seed(bg_seed) # Seed generator to create the inital latent noise | |
latents_bg = get_scaled_latents(overall_batch_size, unet.config.in_channels, height, width, generator, dtype, scheduler) | |
# Other than t=T (idx=0), we only have masked latents. This is to prevent accidentally loading from non-masked part. Use same mask as the one used to compose the latents. | |
if use_fast_schedule: | |
# If we use fast schedule, we only compose the frozen steps because the later steps do not match. | |
composed_latents = torch.zeros((fast_after_steps + 1, *latents_bg.shape), dtype=dtype) | |
else: | |
# Otherwise we compose all steps so that we don't need to compose again if we change the frozen steps. | |
composed_latents = torch.zeros((num_inference_steps + 1, *latents_bg.shape), dtype=dtype) | |
composed_latents[0] = latents_bg | |
foreground_indices = torch.zeros(latents_bg.shape[-2:], dtype=torch.long) | |
mask_size = np.array([mask_tensor.sum().item() for mask_tensor in mask_tensor_list]) | |
# Compose the largest mask first | |
mask_order = np.argsort(-mask_size) | |
if compose_box_to_bg: | |
# This has two functionalities: | |
# 1. copies the right initial latents from the right place (for centered so generation), 2. copies the right initial latents (since we have foreground blending) for centered/original so generation. | |
for mask_idx in mask_order: | |
latents_all, mask_tensor = latents_all_list[mask_idx], mask_tensor_list[mask_idx] | |
# Note: need to be careful to not copy from zeros due to shifting. | |
mask_tensor = utils.binary_mask_to_box_mask(mask_tensor, to_device=False) | |
mask_tensor_expanded = mask_tensor[None, None, None, ...].to(dtype) | |
composed_latents[0] = composed_latents[0] * (1. - mask_tensor_expanded) + latents_all[0] * mask_tensor_expanded | |
# This is still needed with `compose_box_to_bg` to ensure the foreground latent is still visible and to compute foreground indices. | |
for mask_idx in mask_order: | |
latents_all, mask_tensor = latents_all_list[mask_idx], mask_tensor_list[mask_idx] | |
foreground_indices = foreground_indices * (~mask_tensor) + (mask_idx + 1) * mask_tensor | |
mask_tensor_expanded = mask_tensor[None, None, None, ...].to(dtype) | |
composed_latents = composed_latents * (1. - mask_tensor_expanded) + latents_all[:fast_after_steps + 1] * mask_tensor_expanded | |
composed_latents, foreground_indices = composed_latents.to(torch_device), foreground_indices.to(torch_device) | |
return composed_latents, foreground_indices | |
def align_with_bboxes(latents_all_list, mask_tensor_list, bboxes, horizontal_shift_only=False): | |
""" | |
Each offset in `offset_list` is `(x_offset, y_offset)` (normalized). | |
""" | |
new_latents_all_list, new_mask_tensor_list, offset_list = [], [], [] | |
for latents_all, mask_tensor, bbox in zip(latents_all_list, mask_tensor_list, bboxes): | |
x_src_center, y_src_center = utils.binary_mask_to_center(mask_tensor, normalize=True) | |
x_min_dest, y_min_dest, x_max_dest, y_max_dest = bbox | |
x_dest_center, y_dest_center = (x_min_dest + x_max_dest) / 2, (y_min_dest + y_max_dest) / 2 | |
# print("src (x,y):", x_src_center, y_src_center, "dest (x,y):", x_dest_center, y_dest_center) | |
x_offset, y_offset = x_dest_center - x_src_center, y_dest_center - y_src_center | |
if horizontal_shift_only: | |
y_offset = 0. | |
offset = x_offset, y_offset | |
latents_all = utils.shift_tensor(latents_all, x_offset, y_offset, offset_normalized=True) | |
mask_tensor = utils.shift_tensor(mask_tensor, x_offset, y_offset, offset_normalized=True) | |
new_latents_all_list.append(latents_all) | |
new_mask_tensor_list.append(mask_tensor) | |
offset_list.append(offset) | |
return new_latents_all_list, new_mask_tensor_list, offset_list | |
def compose_latents_with_alignment( | |
model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, | |
align_with_overall_bboxes=True, overall_bboxes=None, horizontal_shift_only=False, **kwargs | |
): | |
if align_with_overall_bboxes and len(latents_all_list): | |
expanded_overall_bboxes = utils.expand_overall_bboxes(overall_bboxes) | |
latents_all_list, mask_tensor_list, offset_list = align_with_bboxes(latents_all_list, mask_tensor_list, bboxes=expanded_overall_bboxes, horizontal_shift_only=horizontal_shift_only) | |
else: | |
offset_list = [(0., 0.) for _ in range(len(latents_all_list))] | |
composed_latents, foreground_indices = compose_latents(model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, **kwargs) | |
return composed_latents, foreground_indices, offset_list | |
def get_input_latents_list(model_dict, bg_seed, fg_seed_start, fg_blending_ratio, height, width, so_prompt_phrase_box_list=None, so_boxes=None, verbose=False): | |
""" | |
Note: the returned input latents are scaled by `scheduler.init_noise_sigma` | |
""" | |
unet, scheduler, dtype = model_dict.unet, model_dict.scheduler, model_dict.dtype | |
generator_bg = torch.manual_seed(bg_seed) # Seed generator to create the inital latent noise | |
latents_bg = get_unscaled_latents(batch_size=1, in_channels=unet.config.in_channels, height=height, width=width, generator=generator_bg, dtype=dtype) | |
input_latents_list = [] | |
if so_boxes is None: | |
# For compatibility | |
so_boxes = [item[-1] for item in so_prompt_phrase_box_list] | |
# change this changes the foreground initial noise | |
for idx, obj_box in enumerate(so_boxes): | |
H, W = height // 8, width // 8 | |
fg_mask = utils.proportion_to_mask(obj_box, H, W) | |
if verbose: | |
plt.imshow(fg_mask.cpu().numpy()) | |
plt.show() | |
fg_seed = fg_seed_start + idx | |
if fg_seed == bg_seed: | |
# We should have different seeds for foreground and background | |
fg_seed += 12345 | |
generator_fg = torch.manual_seed(fg_seed) | |
latents_fg = get_unscaled_latents(batch_size=1, in_channels=unet.config.in_channels, height=height, width=width, generator=generator_fg, dtype=dtype) | |
input_latents = blend_latents(latents_bg, latents_fg, fg_mask, fg_blending_ratio=fg_blending_ratio) | |
input_latents = input_latents * scheduler.init_noise_sigma | |
input_latents_list.append(input_latents) | |
latents_bg = latents_bg * scheduler.init_noise_sigma | |
return input_latents_list, latents_bg | |