Tony Lian
Update: add attention guidance and refactor the code
89f6983
raw
history blame
5.09 kB
# visualization-related functions are in vis
import numbers
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import utils
def get_token_attnv2(token_id, saved_attns, attn_key, visualize_step_start=10, input_ca_has_condition_only=False, return_np=False):
"""
saved_attns: a list of saved_attn (list is across timesteps)
moves to cpu by default
"""
saved_attns = saved_attns[visualize_step_start:]
saved_attns = [saved_attn[attn_key].cpu() for saved_attn in saved_attns]
attn = torch.stack(saved_attns, dim=0).mean(dim=0)
# print("attn shape", attn.shape)
# attn: (batch, head, spatial, text)
if not input_ca_has_condition_only:
assert attn.shape[0] == 2, f"Expect to have 2 items (uncond and cond), but found {attn.shape[0]} items"
attn = attn[1]
else:
assert attn.shape[0] == 1, f"Expect to have 1 item (cond only), but found {attn.shape[0]} items"
attn = attn[0]
attn = attn.mean(dim=0)[:, token_id]
H = W = int(math.sqrt(attn.shape[0]))
attn = attn.reshape((H, W))
if return_np:
return attn.numpy()
return attn
def shift_saved_attns_item(saved_attns_item, offset, guidance_attn_keys, horizontal_shift_only=False):
"""
`horizontal_shift_only`: only shift horizontally. If you use `offset` from `compose_latents_with_alignment` with `horizontal_shift_only=True`, the `offset` already has y_offset = 0 and this option is not needed.
"""
x_offset, y_offset = offset
if horizontal_shift_only:
y_offset = 0.
new_saved_attns_item = {}
for k in guidance_attn_keys:
attn_map = saved_attns_item[k]
attn_size = attn_map.shape[-2]
attn_h = attn_w = int(math.sqrt(attn_size))
# Example dimensions: [batch_size, num_heads, 8, 8, num_tokens]
attn_map = attn_map.unflatten(2, (attn_h, attn_w))
attn_map = utils.shift_tensor(
attn_map, x_offset, y_offset,
offset_normalized=True, ignore_last_dim=True
)
attn_map = attn_map.flatten(2, 3)
new_saved_attns_item[k] = attn_map
return new_saved_attns_item
def shift_saved_attns(saved_attns, offset, guidance_attn_keys, **kwargs):
# Iterate over timesteps
shifted_saved_attns = [shift_saved_attns_item(saved_attns_item, offset, guidance_attn_keys, **kwargs) for saved_attns_item in saved_attns]
return shifted_saved_attns
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
Credit: https://discuss.pytorch.org/t/is-there-anyway-to-do-gaussian-filtering-for-an-image-2d-3d-in-pytorch/12351/10
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(
dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)