Spaces:
Running
on
T4
Running
on
T4
import torch | |
from tqdm import tqdm | |
import utils | |
from PIL import Image | |
import gc | |
import numpy as np | |
from .attention import GatedSelfAttentionDense | |
from .models import torch_device | |
def encode(model_dict, image, generator): | |
""" | |
image should be a PIL object or numpy array with range 0 to 255 | |
""" | |
vae, dtype = model_dict.vae, model_dict.dtype | |
if isinstance(image, Image.Image): | |
w, h = image.size | |
assert w % 8 == 0 and h % 8 == 0, f"h ({h}) and w ({w}) should be a multiple of 8" | |
# w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
# image = np.array(image.resize((w, h), resample=Image.Resampling.LANCZOS))[None, :] | |
image = np.array(image) | |
if isinstance(image, np.ndarray): | |
assert image.dtype == np.uint8, f"Should have dtype uint8 (dtype: {image.dtype})" | |
image = image.astype(np.float32) / 255.0 | |
image = image[None, ...] | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
assert isinstance(image, torch.Tensor), f"type of image: {type(image)}" | |
image = image.to(device=torch_device, dtype=dtype) | |
latents = vae.encode(image).latent_dist.sample(generator) | |
latents = vae.config.scaling_factor * latents | |
return latents | |
def decode(vae, latents): | |
# scale and decode the image latents with vae | |
scaled_latents = 1 / 0.18215 * latents | |
with torch.no_grad(): | |
image = vae.decode(scaled_latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
return images | |
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False, scheduler_key='dpm_scheduler'): | |
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype | |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings | |
if not no_set_timesteps: | |
scheduler.set_timesteps(num_inference_steps) | |
for t in tqdm(scheduler.timesteps): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
images = decode(vae, latents) | |
ret = [latents, images] | |
return tuple(ret) | |
def gligen_enable_fuser(unet, enabled=True): | |
for module in unet.modules(): | |
if isinstance(module, GatedSelfAttentionDense): | |
module.enabled = enabled | |
def generate_gligen(model_dict, latents, input_embeddings, num_inference_steps, bboxes, phrases, num_images_per_prompt=1, gligen_scheduled_sampling_beta: float = 0.3, guidance_scale=7.5, | |
frozen_steps=20, frozen_mask=None, | |
return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None, | |
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True, | |
return_box_vis=False, show_progress=True, save_all_latents=False, scheduler_key='dpm_scheduler'): | |
""" | |
The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases). | |
""" | |
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype | |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings | |
if latents.dim() == 5: | |
# latents_all from the input side, different from the latents_all to be saved | |
latents_all_input = latents | |
latents = latents[0] | |
else: | |
latents_all_input = None | |
# Just in case that we have in-place ops | |
latents = latents.clone() | |
if save_all_latents: | |
# offload to cpu to save space | |
if offload_latents_to_cpu: | |
latents_all = [latents.cpu()] | |
else: | |
latents_all = [latents] | |
scheduler.set_timesteps(num_inference_steps) | |
if frozen_mask is not None: | |
frozen_mask = frozen_mask.to(dtype=dtype).clamp(0., 1.) | |
batch_size = 1 | |
# 5.1 Prepare GLIGEN variables | |
assert len(phrases) == len(bboxes) | |
# assert batch_size == 1 | |
max_objs = 30 | |
_boxes = bboxes | |
n_objs = min(len(_boxes), max_objs) | |
boxes = torch.zeros(max_objs, 4, device=torch_device, dtype=dtype) | |
phrase_embeddings = torch.zeros(max_objs, 768, device=torch_device, dtype=dtype) | |
masks = torch.zeros(max_objs, device=torch_device, dtype=dtype) | |
if n_objs > 0: | |
boxes[:n_objs] = torch.tensor(_boxes[:n_objs]) | |
tokenizer_inputs = tokenizer(phrases, padding=True, return_tensors="pt").to(torch_device) | |
_phrase_embeddings = text_encoder(**tokenizer_inputs).pooler_output | |
phrase_embeddings[:n_objs] = _phrase_embeddings[:n_objs] | |
masks[:n_objs] = 1 | |
# Classifier-free guidance | |
repeat_batch = batch_size * num_images_per_prompt * 2 | |
boxes = boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() | |
phrase_embeddings = phrase_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone() | |
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() | |
masks[:repeat_batch // 2] = 0 | |
if return_saved_cross_attn: | |
saved_attns = [] | |
main_cross_attention_kwargs = { | |
'offload_cross_attn_to_cpu': offload_cross_attn_to_cpu, | |
'return_cond_ca_only': return_cond_ca_only, | |
'return_token_ca_only': return_token_ca_only, | |
'save_keys': saved_cross_attn_keys, | |
'gligen': { | |
'boxes': boxes, | |
'positive_embeddings': phrase_embeddings, | |
'masks': masks | |
} | |
} | |
timesteps = scheduler.timesteps | |
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps)) | |
gligen_enable_fuser(unet, True) | |
for index, t in enumerate(tqdm(timesteps, disable=not show_progress)): | |
# Scheduled sampling | |
if index == num_grounding_steps: | |
gligen_enable_fuser(unet, False) | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t) | |
main_cross_attention_kwargs['save_attn_to_dict'] = {} | |
# predict the noise residual | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, | |
cross_attention_kwargs=main_cross_attention_kwargs).sample | |
if return_saved_cross_attn: | |
saved_attns.append(main_cross_attention_kwargs['save_attn_to_dict']) | |
del main_cross_attention_kwargs['save_attn_to_dict'] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
if frozen_mask is not None and index < frozen_steps: | |
latents = latents_all_input[index+1] * frozen_mask + latents * (1. - frozen_mask) | |
if save_all_latents: | |
if offload_latents_to_cpu: | |
latents_all.append(latents.cpu()) | |
else: | |
latents_all.append(latents) | |
# Turn off fuser for typical SD | |
gligen_enable_fuser(unet, False) | |
images = decode(vae, latents) | |
ret = [latents, images] | |
if return_saved_cross_attn: | |
ret.append(saved_attns) | |
if return_box_vis: | |
pil_images = [utils.draw_box(Image.fromarray(image), bboxes, phrases) for image in images] | |
ret.append(pil_images) | |
if save_all_latents: | |
latents_all = torch.stack(latents_all, dim=0) | |
ret.append(latents_all) | |
return tuple(ret) | |