Tony Lian commited on
Commit
853e04d
1 Parent(s): 61ac46b

Update examples

Browse files
Files changed (45) hide show
  1. app.py +7 -6
  2. examples.py +8 -8
  3. gradio_cached_examples/15/log.csv +6 -6
  4. gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56/2e40cc791e626d4b53246213fbb411de998a0c48/image.png +0 -0
  5. gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56/captions.json +1 -0
  6. gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093/6b8454f7801357c4c41076b4281ff36cc3c168d1/image.png +0 -0
  7. gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093/captions.json +0 -1
  8. gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1/65c5ef22af85300a0da31b44b1ad679a47eecc25/image.png +0 -0
  9. gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1/captions.json +0 -1
  10. gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2/5da6114e92c338adc17812a0333df55a4234c9ed/image.png +0 -0
  11. gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2/captions.json +1 -0
  12. gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a/captions.json +1 -0
  13. gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a/d49483d8de74eb5fc4d6adfe89475c71d8e3036f/image.png +0 -0
  14. gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67/101f36d55ac3f9ebcf7ff5647da0d7acb4994c97/image.png +0 -0
  15. gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67/captions.json +0 -1
  16. gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a/b6ffdf54ecc5f212c05fea1d31937c56d9a46ed0/image.png +0 -0
  17. gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a/captions.json +1 -0
  18. gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026/210e77149171a376e7be7a733564930e356849db/image.png +0 -0
  19. gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026/captions.json +0 -1
  20. gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2/44f995a0ec0c935f5881edd8af7f10e857e1a968/image.png +0 -0
  21. gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2/captions.json +0 -1
  22. gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503/a513ea281318c5da990ab8817d346efad4afb0ad/image.png +0 -0
  23. gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503/captions.json +1 -0
  24. gradio_cached_examples/40/log.csv +5 -5
  25. gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08/574f77a943affe0685e630d003d40486d687548b/image.png +0 -0
  26. gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08/captions.json +1 -0
  27. gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7/captions.json +0 -1
  28. gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7/e73c626c4dd21a7ad80767910261adf9442952fc/image.png +0 -0
  29. gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4/096597e5396f718c54fd1467ecbf8d64ed1c4b58/image.png +0 -0
  30. gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4/captions.json +1 -0
  31. gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971/6863bcdf1ddd78ec6b38cb7f7e54dfd02042cfc8/image.png +0 -0
  32. gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971/captions.json +0 -1
  33. gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7/c881ad29f622a8f1d9a88854d93ec05142de78c0/image.png +0 -0
  34. gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7/captions.json +0 -1
  35. gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b/7206c6d00d3a9cfea4bae3cb8504c2170eb97799/image.png +0 -0
  36. gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b/captions.json +1 -0
  37. gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3/af91a254a7889ad4a7f59df784a89add68b8bb04/image.png +0 -0
  38. gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3/captions.json +1 -0
  39. gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49/5107323699a702f3dbb8cac7480802bd1ce00aa8/image.png +0 -0
  40. gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49/captions.json +0 -1
  41. gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b/62563c47f44f246d810891c182da583bab12f8a0/image.png +0 -0
  42. gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b/captions.json +0 -1
  43. gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3/9bcc5a4a5fa197042b7eb3ae9925bb6a1f3de0db/image.png +0 -0
  44. gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3/captions.json +1 -0
  45. gradio_cached_examples/50/log.csv +5 -5
app.py CHANGED
@@ -88,7 +88,7 @@ def get_layout_image(response):
88
  def get_layout_image_gallery(response):
89
  return [get_layout_image(response)]
90
 
91
- def get_ours_image(response, seed, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, overall_prompt_override="", fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
92
  if response == "":
93
  response = layout_placeholder
94
  gen_boxes, bg_prompt = parse_input(response)
@@ -121,8 +121,9 @@ def get_baseline_image(prompt, seed=0):
121
  prompt = prompt_placeholder
122
 
123
  scheduler_key = "dpm_scheduler"
 
124
 
125
- image_np = run_baseline(prompt, bg_seed=seed, scheduler_key=scheduler_key)
126
  return [image_np]
127
 
128
  def parse_input(text=None):
@@ -202,7 +203,7 @@ html = f"""<h1>LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to
202
  <p>2. You can perform multi-round specification by giving ChatGPT follow-up requests (e.g., make the object boxes bigger).</p>
203
  <p>3. You can also try prompts in Simplified Chinese. If you want to try prompts in another language, translate the first line of last example to your language.</p>
204
  <p>4. The diffusion model only runs 50 steps by default in this demo. You can make it run more/fewer steps to get higher quality images or faster generation (or tweak frozen steps/guidance steps for better guidance and coherence).</p>
205
- <p>5. Duplicate this space and add GPU or clone the space and run locally to skip the queue and run our model faster. (Currently we are using a T4, and you can add a A10G to make it 5x faster) {duplicate_html}</p>
206
  <br/>
207
  <p>Implementation note: In this demo, we replace the attention manipulation in our layout-guided Stable Diffusion described in our paper with GLIGEN due to much faster inference speed (<b>FlashAttention supported, no backprop needed</b> during inference). Compared to vanilla GLIGEN, we have better coherence. Other parts of text-to-image pipeline, including single object generation and SAM, remain the same. The settings and examples in the prompt are simplified in this demo.</p>
208
  <style>.btn {{flex-grow: unset !important;}} </style>
@@ -243,7 +244,7 @@ with gr.Blocks(
243
  frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
244
  gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
245
  dpm_scheduler = gr.Checkbox(label="Use DPM scheduler (unchecked: DDIM scheduler, may have better coherence, recommend >=50 inference steps)", show_label=False, value=True)
246
- use_autocast = gr.Checkbox(label="Use FP16 Mixed Precision", show_label=False, value=True)
247
  fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
248
  fg_blending_ratio = gr.Slider(0, 1, value=0.1, step=0.01, label="Variations added to foreground for single object generation (0: no variation, 1: max variation)")
249
  so_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for single object generation", value=DEFAULT_SO_NEGATIVE_PROMPT)
@@ -257,11 +258,11 @@ with gr.Blocks(
257
  label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain", preview=True
258
  )
259
  visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
260
- generate_btn.click(fn=get_ours_image, inputs=[response, seed, num_inference_steps, dpm_scheduler, use_autocast, overall_prompt_override, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=gallery, api_name="layout-to-image")
261
 
262
  gr.Examples(
263
  examples=stage2_examples,
264
- inputs=[response, seed],
265
  outputs=[gallery],
266
  fn=get_ours_image,
267
  cache_examples=True
 
88
  def get_layout_image_gallery(response):
89
  return [get_layout_image(response)]
90
 
91
+ def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
92
  if response == "":
93
  response = layout_placeholder
94
  gen_boxes, bg_prompt = parse_input(response)
 
121
  prompt = prompt_placeholder
122
 
123
  scheduler_key = "dpm_scheduler"
124
+ num_inference_steps = 50
125
 
126
+ image_np = run_baseline(prompt, bg_seed=seed, scheduler_key=scheduler_key, num_inference_steps=num_inference_steps)
127
  return [image_np]
128
 
129
  def parse_input(text=None):
 
203
  <p>2. You can perform multi-round specification by giving ChatGPT follow-up requests (e.g., make the object boxes bigger).</p>
204
  <p>3. You can also try prompts in Simplified Chinese. If you want to try prompts in another language, translate the first line of last example to your language.</p>
205
  <p>4. The diffusion model only runs 50 steps by default in this demo. You can make it run more/fewer steps to get higher quality images or faster generation (or tweak frozen steps/guidance steps for better guidance and coherence).</p>
206
+ <p>5. Duplicate this space and add GPU or clone the space and run locally to skip the queue and run our model faster. (<b>Currently we are using a T4 GPU on this space, which is quite slow, and you can add a A10G to make it 5x faster</b>) {duplicate_html}</p>
207
  <br/>
208
  <p>Implementation note: In this demo, we replace the attention manipulation in our layout-guided Stable Diffusion described in our paper with GLIGEN due to much faster inference speed (<b>FlashAttention supported, no backprop needed</b> during inference). Compared to vanilla GLIGEN, we have better coherence. Other parts of text-to-image pipeline, including single object generation and SAM, remain the same. The settings and examples in the prompt are simplified in this demo.</p>
209
  <style>.btn {{flex-grow: unset !important;}} </style>
 
244
  frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
245
  gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
246
  dpm_scheduler = gr.Checkbox(label="Use DPM scheduler (unchecked: DDIM scheduler, may have better coherence, recommend >=50 inference steps)", show_label=False, value=True)
247
+ use_autocast = gr.Checkbox(label="Use FP16 Mixed Precision (faster but with slightly lower quality)", show_label=False, value=True)
248
  fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
249
  fg_blending_ratio = gr.Slider(0, 1, value=0.1, step=0.01, label="Variations added to foreground for single object generation (0: no variation, 1: max variation)")
250
  so_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for single object generation", value=DEFAULT_SO_NEGATIVE_PROMPT)
 
258
  label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain", preview=True
259
  )
260
  visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
261
+ generate_btn.click(fn=get_ours_image, inputs=[response, overall_prompt_override, seed, num_inference_steps, dpm_scheduler, use_autocast, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=gallery, api_name="layout-to-image")
262
 
263
  gr.Examples(
264
  examples=stage2_examples,
265
+ inputs=[response, overall_prompt_override, seed],
266
  outputs=[gallery],
267
  fn=get_ours_image,
268
  cache_examples=True
examples.py CHANGED
@@ -2,7 +2,7 @@ stage1_examples = [
2
  ["""A realistic photo of a gray cat and an orange dog on the grass."""],
3
  ["""In an indoor scene, a blue cube directly above a red cube with a vase on the left of them."""],
4
  ["""A realistic photo of a wooden table without bananas in an indoor scene"""],
5
- ["""A man in red is standing next to another woman in blue in the mountains."""],
6
  ["""一个室内场景的水彩画,一个桌子上面放着一盘水果"""]
7
  ]
8
 
@@ -10,17 +10,17 @@ stage1_examples = [
10
  stage2_examples = [
11
  ["""Caption: A realistic photo of a gray cat and an orange dog on the grass.
12
  Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
13
- Background prompt: A realistic photo of a grassy area.""", 0],
14
  ["""Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
15
  Objects: [('a table', [81, 242, 350, 210]), ('a plate of fruits', [151, 287, 210, 117])]
16
- Background prompt: A watercolor painting of an indoor scene""", 1],
17
  ["""Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
18
  Objects: [('a blue cube', [232, 116, 76, 76]), ('a red cube', [232, 212, 76, 76]), ('a vase', [100, 198, 62, 144])]
19
- Background prompt: An indoor scene""", 2],
20
  ["""Caption: A realistic photo of a wooden table without bananas in an indoor scene
21
  Objects: [('a wooden table', [75, 256, 365, 156])]
22
- Background prompt: A realistic photo of an indoor scene""", 3],
23
- ["""Caption: A man in red is standing next to another woman in blue in the mountains.
24
- Objects: [('a man in red', [100, 160, 111, 320]), ('a woman in blue', [230, 170, 102, 310])]
25
- Background prompt: A scenic image of the mountains""", 4],
26
  ]
 
2
  ["""A realistic photo of a gray cat and an orange dog on the grass."""],
3
  ["""In an indoor scene, a blue cube directly above a red cube with a vase on the left of them."""],
4
  ["""A realistic photo of a wooden table without bananas in an indoor scene"""],
5
+ ["""A realistic photo of two cars on the road."""],
6
  ["""一个室内场景的水彩画,一个桌子上面放着一盘水果"""]
7
  ]
8
 
 
10
  stage2_examples = [
11
  ["""Caption: A realistic photo of a gray cat and an orange dog on the grass.
12
  Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
13
+ Background prompt: A realistic photo of a grassy area.""", "", 0],
14
  ["""Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
15
  Objects: [('a table', [81, 242, 350, 210]), ('a plate of fruits', [151, 287, 210, 117])]
16
+ Background prompt: A watercolor painting of an indoor scene""", "", 1],
17
  ["""Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
18
  Objects: [('a blue cube', [232, 116, 76, 76]), ('a red cube', [232, 212, 76, 76]), ('a vase', [100, 198, 62, 144])]
19
+ Background prompt: An indoor scene""", "", 2],
20
  ["""Caption: A realistic photo of a wooden table without bananas in an indoor scene
21
  Objects: [('a wooden table', [75, 256, 365, 156])]
22
+ Background prompt: A realistic photo of an indoor scene""", "", 3],
23
+ ["""Caption: A realistic photo of two cars on the road.
24
+ Objects: [('a car', [20, 242, 235, 185]), ('a car', [275, 246, 215, 180])]
25
+ Background prompt: A realistic photo of a road.""", "A realistic photo of two cars on the road.", 4],
26
  ]
gradio_cached_examples/15/log.csv CHANGED
@@ -30,7 +30,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
30
  Background prompt: An oil painting of a living room scene
31
 
32
  Caption: A realistic photo of a gray cat and an orange dog on the grass.
33
- Objects: ",,,2023-06-19 12:19:18.120678
34
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
35
 
36
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -62,7 +62,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
62
  Background prompt: An oil painting of a living room scene
63
 
64
  Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
65
- Objects: ",,,2023-06-19 12:19:18.121279
66
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
67
 
68
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -94,7 +94,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
94
  Background prompt: An oil painting of a living room scene
95
 
96
  Caption: A realistic photo of a wooden table without bananas in an indoor scene
97
- Objects: ",,,2023-06-19 12:19:18.121771
98
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
99
 
100
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -125,8 +125,8 @@ Caption: 一个客厅场景的油画,墙上挂着电视,电视下面是一
125
  Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a flower vase', [166, 222, 92, 108])]
126
  Background prompt: An oil painting of a living room scene
127
 
128
- Caption: A man in red is standing next to another woman in blue in the mountains.
129
- Objects: ",,,2023-06-19 12:19:18.122219
130
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
131
 
132
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -158,4 +158,4 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
158
  Background prompt: An oil painting of a living room scene
159
 
160
  Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
161
- Objects: ",,,2023-06-19 12:19:18.122722
 
30
  Background prompt: An oil painting of a living room scene
31
 
32
  Caption: A realistic photo of a gray cat and an orange dog on the grass.
33
+ Objects: ",,,2023-06-29 11:10:05.644376
34
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
35
 
36
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
62
  Background prompt: An oil painting of a living room scene
63
 
64
  Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
65
+ Objects: ",,,2023-06-29 11:10:05.644933
66
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
67
 
68
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
94
  Background prompt: An oil painting of a living room scene
95
 
96
  Caption: A realistic photo of a wooden table without bananas in an indoor scene
97
+ Objects: ",,,2023-06-29 11:10:05.645428
98
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
99
 
100
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
125
  Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a flower vase', [166, 222, 92, 108])]
126
  Background prompt: An oil painting of a living room scene
127
 
128
+ Caption: A realistic photo of two cars on the road.
129
+ Objects: ",,,2023-06-29 11:10:05.645947
130
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
131
 
132
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
158
  Background prompt: An oil painting of a living room scene
159
 
160
  Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
161
+ Objects: ",,,2023-06-29 11:10:05.646731
gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56/2e40cc791e626d4b53246213fbb411de998a0c48/image.png ADDED
gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56/2e40cc791e626d4b53246213fbb411de998a0c48/image.png": null}
gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093/6b8454f7801357c4c41076b4281ff36cc3c168d1/image.png DELETED
Binary file (488 kB)
 
gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093/6b8454f7801357c4c41076b4281ff36cc3c168d1/image.png": null}
 
 
gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1/65c5ef22af85300a0da31b44b1ad679a47eecc25/image.png DELETED
Binary file (580 kB)
 
gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1/65c5ef22af85300a0da31b44b1ad679a47eecc25/image.png": null}
 
 
gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2/5da6114e92c338adc17812a0333df55a4234c9ed/image.png ADDED
gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2/5da6114e92c338adc17812a0333df55a4234c9ed/image.png": null}
gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a/d49483d8de74eb5fc4d6adfe89475c71d8e3036f/image.png": null}
gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a/d49483d8de74eb5fc4d6adfe89475c71d8e3036f/image.png ADDED
gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67/101f36d55ac3f9ebcf7ff5647da0d7acb4994c97/image.png DELETED
Binary file (376 kB)
 
gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67/101f36d55ac3f9ebcf7ff5647da0d7acb4994c97/image.png": null}
 
 
gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a/b6ffdf54ecc5f212c05fea1d31937c56d9a46ed0/image.png ADDED
gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a/b6ffdf54ecc5f212c05fea1d31937c56d9a46ed0/image.png": null}
gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026/210e77149171a376e7be7a733564930e356849db/image.png DELETED
Binary file (572 kB)
 
gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026/210e77149171a376e7be7a733564930e356849db/image.png": null}
 
 
gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2/44f995a0ec0c935f5881edd8af7f10e857e1a968/image.png DELETED
Binary file (495 kB)
 
gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2/44f995a0ec0c935f5881edd8af7f10e857e1a968/image.png": null}
 
 
gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503/a513ea281318c5da990ab8817d346efad4afb0ad/image.png ADDED
gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503/a513ea281318c5da990ab8817d346efad4afb0ad/image.png": null}
gradio_cached_examples/40/log.csv CHANGED
@@ -1,6 +1,6 @@
1
  Generated image,flag,username,timestamp
2
- ./gradio_cached_examples/40/Generated image/5cc41c19-e968-478e-b144-5b8ba3d07be1,,,2023-06-20 07:17:18.077779
3
- ./gradio_cached_examples/40/Generated image/2b8c8fa6-273e-4993-b984-ca766b7fa093,,,2023-06-20 07:17:23.197795
4
- ./gradio_cached_examples/40/Generated image/cd999256-9a24-4a5b-a897-5c5fa56c5a67,,,2023-06-20 07:17:30.064619
5
- ./gradio_cached_examples/40/Generated image/eb50d204-9a80-4e66-82a4-b24be17a05c2,,,2023-06-20 07:17:33.414443
6
- ./gradio_cached_examples/40/Generated image/e5bbe48b-6f7d-45c9-b75f-38f1709e0026,,,2023-06-20 07:17:38.498364
 
1
  Generated image,flag,username,timestamp
2
+ ./gradio_cached_examples/40/Generated image/2780fc35-353f-42b3-b738-86e456fe6f56,,,2023-06-29 11:10:11.840068
3
+ ./gradio_cached_examples/40/Generated image/f613c4a4-afa5-4849-8d9b-6e1422dab503,,,2023-06-29 11:10:16.511970
4
+ ./gradio_cached_examples/40/Generated image/e4db9a87-7616-4e70-b7f0-90d12815524a,,,2023-06-29 11:10:22.574699
5
+ ./gradio_cached_examples/40/Generated image/81f59ccb-1a36-42ae-9914-2552463399d2,,,2023-06-29 11:10:25.942870
6
+ ./gradio_cached_examples/40/Generated image/ccb2d58b-c9c4-466f-a20e-360535ae287a,,,2023-06-29 11:10:30.618947
gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08/574f77a943affe0685e630d003d40486d687548b/image.png ADDED
gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08/574f77a943affe0685e630d003d40486d687548b/image.png": null}
gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7/e73c626c4dd21a7ad80767910261adf9442952fc/image.png": null}
 
 
gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7/e73c626c4dd21a7ad80767910261adf9442952fc/image.png DELETED
Binary file (519 kB)
 
gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4/096597e5396f718c54fd1467ecbf8d64ed1c4b58/image.png ADDED
gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4/096597e5396f718c54fd1467ecbf8d64ed1c4b58/image.png": null}
gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971/6863bcdf1ddd78ec6b38cb7f7e54dfd02042cfc8/image.png DELETED
Binary file (477 kB)
 
gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971/6863bcdf1ddd78ec6b38cb7f7e54dfd02042cfc8/image.png": null}
 
 
gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7/c881ad29f622a8f1d9a88854d93ec05142de78c0/image.png DELETED
Binary file (329 kB)
 
gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7/c881ad29f622a8f1d9a88854d93ec05142de78c0/image.png": null}
 
 
gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b/7206c6d00d3a9cfea4bae3cb8504c2170eb97799/image.png ADDED
gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b/7206c6d00d3a9cfea4bae3cb8504c2170eb97799/image.png": null}
gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3/af91a254a7889ad4a7f59df784a89add68b8bb04/image.png ADDED
gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3/af91a254a7889ad4a7f59df784a89add68b8bb04/image.png": null}
gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49/5107323699a702f3dbb8cac7480802bd1ce00aa8/image.png DELETED
Binary file (394 kB)
 
gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49/5107323699a702f3dbb8cac7480802bd1ce00aa8/image.png": null}
 
 
gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b/62563c47f44f246d810891c182da583bab12f8a0/image.png DELETED
Binary file (343 kB)
 
gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b/62563c47f44f246d810891c182da583bab12f8a0/image.png": null}
 
 
gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3/9bcc5a4a5fa197042b7eb3ae9925bb6a1f3de0db/image.png ADDED
gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3/9bcc5a4a5fa197042b7eb3ae9925bb6a1f3de0db/image.png": null}
gradio_cached_examples/50/log.csv CHANGED
@@ -1,6 +1,6 @@
1
  Generated image,flag,username,timestamp
2
- ./gradio_cached_examples/50/Generated image/3ef81752-e136-466d-b5d0-fa2ddec37971,,,2023-06-20 07:17:39.853483
3
- ./gradio_cached_examples/50/Generated image/460ea7e5-92af-4b13-9c5d-1386164789d7,,,2023-06-20 07:17:41.227531
4
- ./gradio_cached_examples/50/Generated image/bbaa5527-7cf2-47e4-aa03-6d68ecbaa65b,,,2023-06-20 07:17:42.621290
5
- ./gradio_cached_examples/50/Generated image/2b20f451-c8d6-4f26-b580-85a54989b5e7,,,2023-06-20 07:17:43.974086
6
- ./gradio_cached_examples/50/Generated image/8c451715-7470-46fc-9634-e16f88e98e49,,,2023-06-20 07:17:45.349694
 
1
  Generated image,flag,username,timestamp
2
+ ./gradio_cached_examples/50/Generated image/3506257d-6ff8-48f7-9ca2-88a1fa88a7a4,,,2023-06-29 11:10:33.709651
3
+ ./gradio_cached_examples/50/Generated image/5f67e14e-c421-4885-837b-c089dd8f885b,,,2023-06-29 11:10:36.806117
4
+ ./gradio_cached_examples/50/Generated image/7ce72b1f-5123-44fe-9eb8-723d43cdfbb3,,,2023-06-29 11:10:39.927271
5
+ ./gradio_cached_examples/50/Generated image/c9a1be01-ac11-43c2-bb8f-b7eb5e1ac1c3,,,2023-06-29 11:10:42.986167
6
+ ./gradio_cached_examples/50/Generated image/12d9118b-abed-45a7-9114-6f50b13dde08,,,2023-06-29 11:10:46.101567