Lora commited on
Commit
c289bbc
·
1 Parent(s): 6ae73ed

Initial Commit

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pandas as pd
3
+ import transformers
4
+ import gradio as gr
5
+
6
+ # def visualize_word(word, tokenizer, vecs, lm_head, count=5, contents=None):
7
+ def visualize_word(word, count=10, remove_space=False):
8
+
9
+ if not remove_space:
10
+ word = ' ' + word
11
+ print(f"Looking up word ['{word}']")
12
+
13
+ # seems very dumb to have to load the tokenizer every time, but I don't know how to pass a non-interface element into the function in gradio
14
+ tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2')
15
+ vecs = torch.load("senses/all_vecs_mtx.pt")
16
+ lm_head = torch.load("senses/lm_head.pt")
17
+ print("lm_head.shape = ", lm_head.shape)
18
+
19
+ token_ids = tokenizer(word)['input_ids']
20
+ tokens = [tokenizer.decode(token_id) for token_id in token_ids]
21
+ tokens = ", ".join(tokens)
22
+ # look up sense vectors only for the first token
23
+ contents = vecs[token_ids[0]] # torch.Size([16, 768])
24
+
25
+ sense_names = []
26
+ pos_sense_word_lists = []
27
+ neg_sense_word_lists = []
28
+
29
+ for i in range(contents.shape[0]):
30
+ logits = contents[i,:] @ lm_head.t() # (vocab,) [768] @ [768, 50257] -> [50257]
31
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
32
+ sense_names.append('sense {}'.format(i+1))
33
+
34
+ # currently a lot of repetition
35
+ pos_sorted_words = [tokenizer.decode(sorted_indices[j]) for j in range(count)]
36
+ pos_sorted_logits = [sorted_logits[j].item() for j in range(count)]
37
+ pos_word_list = list(zip(pos_sorted_words, pos_sorted_logits))
38
+ pos_sense_word_lists.append(pos_word_list)
39
+
40
+ neg_sorted_words = [tokenizer.decode(sorted_indices[-j-1]) for j in range(count)]
41
+ neg_sorted_logits = [sorted_logits[-j-1].item() for j in range(count)]
42
+ neg_word_list = list(zip(neg_sorted_words, neg_sorted_logits))
43
+ neg_sense_word_lists.append(neg_word_list)
44
+
45
+ pos_data = dict(zip(sense_names, pos_sense_word_lists))
46
+ pos_df = pd.DataFrame(index=[i for i in range(count)],
47
+ columns=list(pos_data.keys()))
48
+ for prop, word_list in pos_data.items():
49
+ for i, word_pair in enumerate(word_list):
50
+ cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1])
51
+ pos_df.at[i, prop] = cell_value
52
+
53
+ neg_data = dict(zip(sense_names, neg_sense_word_lists))
54
+ neg_df = pd.DataFrame(index=[i for i in range(count)],
55
+ columns=list(neg_data.keys()))
56
+ for prop, word_list in neg_data.items():
57
+ for i, word_pair in enumerate(word_list):
58
+ cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1])
59
+ neg_df.at[i, prop] = cell_value
60
+
61
+ return pos_df, neg_df, tokens
62
+
63
+ # argp = argparse.ArgumentParser()
64
+ # argp.add_argument('vecs_path')
65
+ # argp.add_argument('lm_head_path')
66
+ # args = argp.parse_args()
67
+
68
+ # Load tokenizer and parameters
69
+ # tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2')
70
+ # vecs = torch.load(args.vecs_path)
71
+ # lm_head = torch.load(args.lm_head_path)
72
+
73
+ # visualize_word(input('Enter a word:'), tokenizer, vecs, lm_head, count=5)
74
+ # visualize_word("fish", vecs, lm_head, count=COUNT)
75
+
76
+ with gr.Blocks() as demo:
77
+ gr.Markdown("""
78
+ ## Backpack visualization: senses lookup
79
+ > Note: Backpack uses the GPT-2 tokenizer, which includes the space before a word as part of the token, so by default, a space character `' '` is added to the beginning of the word you look up. You can disable this by checking `Remove space before word`, but know this might cause strange behaviors like breaking `afraid` into `af` and `raid`, or `slight` into `s` and `light`.
80
+ """)
81
+ with gr.Row():
82
+ word = gr.Textbox(label="Word")
83
+ token_breakdown = gr.Textbox(label="Token Breakdown (senses are for the first token only)")
84
+ remove_space = gr.Checkbox(label="Remove space before word", default=False)
85
+ count = gr.Slider(minimum=1, maximum=20, value=10, label="Top K", step=1)
86
+ # sentence = gr.Textbox(label="Sentence")
87
+ pos_outputs = gr.Dataframe(label="Highest Scoring Senses")
88
+ neg_outputs = gr.Dataframe(label="Lowest Scoring Senses")
89
+ gr.Examples(
90
+ examples=["science", "afraid", "book", "slight"],
91
+ inputs=[word],
92
+ outputs=[pos_outputs, neg_outputs, token_breakdown],
93
+ fn=visualize_word,
94
+ # cache_examples=True,
95
+ )
96
+
97
+ gr.Button("Look up").click(
98
+ fn=visualize_word,
99
+ inputs= [word, count, remove_space],
100
+ outputs= [pos_outputs, neg_outputs, token_breakdown],
101
+ )
102
+
103
+ # sentence.select(
104
+ # fn=visualize_word,
105
+ # inputs= [word, count],
106
+ # outputs= [pos_outputs, neg_outputs],
107
+ # )
108
+
109
+ demo.launch(share=False)
110
+