loretmar commited on
Commit
528e68c
·
verified ·
1 Parent(s): 8acd1ca

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. app.py +42 -0
  3. pokemon_model_loretmar.keras +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pokemon_model_loretmar.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ model_path = "pokemon_model_loretmar.keras"
7
+ model = tf.keras.models.load_model(model_path)
8
+
9
+
10
+ def predict_pokemon(image):
11
+ # Preprocess image
12
+ print(type(image))
13
+ image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
14
+ image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
15
+ image = np.array(image)
16
+ image = np.expand_dims(image, axis=0) # same as image[None, ...]
17
+
18
+ prediction = model.predict(image)
19
+
20
+ # No need to apply sigmoid, as the output layer already uses softmax
21
+ # Convert the probabilities to rounded values
22
+ prediction = np.round(prediction, 2)
23
+
24
+ # Separate the probabilities for each class
25
+ p_abra = prediction[0][0] # Probability for class 'articuno'
26
+ p_aerodactyl = prediction[0][1] # Probability for class 'moltres'
27
+ p_eevee = prediction[0][2] # Probability for class 'zapdos'
28
+
29
+ # return {'charmander': p_charmander, 'mewtwo': p_mewtwo, 'squirtle': p_squirtle}
30
+ return {'Abra': p_abra, 'Aerodactyl': p_aerodactyl, 'Eevee': p_eevee}
31
+
32
+
33
+ input_image = gr.Image()
34
+ iface = gr.Interface(
35
+ fn=predict_pokemon,
36
+ inputs=input_image,
37
+ outputs=gr.Label(),
38
+ examples=["images/00000000.png", "images/00000001.png", "images/00000002.png", "images/00000003.png", "images/00000004.png", "images/00000005.jpg"],
39
+ #examples=["pokemon\train\Abra\00000000.png", "pokemon\train\Abra\00000001.png.png", "pokemon\train\Dragonite\00000000.png", "pokemon\train\Dragonite\00000001.png", "pokemon\train\Jigglypuff\00000000.png", "pokemon\train\Jigglypuff\00000001.png"],
40
+ description="TEST.")
41
+
42
+ iface.launch()
pokemon_model_loretmar.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06bbf77efb8ae87038ee257c1347e6349bfaf08fa016815c1db968ccc68bde99
3
+ size 250560147