import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "pokemon_model_loretmar.keras" model = tf.keras.models.load_model(model_path) def predict_pokemon(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] prediction = model.predict(image) # No need to apply sigmoid, as the output layer already uses softmax # Convert the probabilities to rounded values prediction = np.round(prediction, 2) # Separate the probabilities for each class p_abra = prediction[0][0] # Probability for class 'articuno' p_aerodactyl = prediction[0][1] # Probability for class 'moltres' p_eevee = prediction[0][2] # Probability for class 'zapdos' # return {'charmander': p_charmander, 'mewtwo': p_mewtwo, 'squirtle': p_squirtle} return {'Abra': p_abra, 'Aerodactyl': p_aerodactyl, 'Eevee': p_eevee} input_image = gr.Image() iface = gr.Interface( fn=predict_pokemon, inputs=input_image, outputs=gr.Label(), examples=["images/00000000.png", "images/00000001.png", "images/00000002.png", "images/00000003.png", "images/00000004.png", "images/00000005.jpg"], #examples=["pokemon\train\Abra\00000000.png", "pokemon\train\Abra\00000001.png.png", "pokemon\train\Dragonite\00000000.png", "pokemon\train\Dragonite\00000001.png", "pokemon\train\Jigglypuff\00000000.png", "pokemon\train\Jigglypuff\00000001.png"], description="TEST.") iface.launch()