import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM from llava.model.builder import load_pretrained_model from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle import argparse import torch import requests from PIL import Image from io import BytesIO import re parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.6-mistral-7b") parser.add_argument("--image-file", type=str, required=True) parser.add_argument("--inference-type", type=str, default="auto") parser.add_argument("--prompt", type=str, default="Explain this image") cmd_args = parser.parse_args() # Line 138 uncomment the cuda() to use GPUs # device = "cpu" device = cmd_args.inference_type prompt = cmd_args.prompt image_file = cmd_args.image_file model_path = cmd_args.model_path # Functions for inference def image_parser(args): out = args.image_file.split(args.sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out model_name = get_model_name_from_path('llava-v1.6-mistral-7b') args = type('Args', (), { "model_path": model_path, "model_base": None, "model_name": model_name, "query": prompt, "conv_mode": None, "image_file": image_file, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() tokenizer, model, image_processor, context_len = load_pretrained_model( model_path, None, model_name, device_map=device ) qs = args.query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs if "llama-2" in model_name.lower(): conv_mode = "llava_llama_2" elif "mistral" in model_name.lower(): conv_mode = "mistral_instruct" elif "v1.6-34b" in model_name.lower(): conv_mode = "chatml_direct" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print( "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( conv_mode, args.conv_mode, args.conv_mode ) ) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if ".jpg" in image_file or ".png" in image_file: image_files = image_parser(args) else: import glob import os image_ext = ("*.png", '*.jpg') image_files = [] for ext in image_ext: image_files.extend(glob.glob(os.path.join(image_file, ext))) images = load_images(image_files) image_sizes = [x.size for x in images] images_tensor = process_images( images, image_processor, model.config ).to(model.device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) # .cuda() ) with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, image_sizes=image_sizes, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=args.max_new_tokens, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() if "dataset1" in image_file: print("Num of words: ", len(outputs)) elif "dataset2" in image_file: print() else: print("Is single word?", len((outputs).split()) == 1) print(outputs) # End Llava inference