OFA-Image_Caption / fairseq /examples /translation /prepare-iwslt17-multilingual.sh
lotrlol's picture
Duplicate from OFA-Sys/OFA-Image_Caption
9b43833
#!/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
SRCS=(
"de"
"fr"
)
TGT=en
ROOT=$(dirname "$0")
SCRIPTS=$ROOT/../../scripts
SPM_TRAIN=$SCRIPTS/spm_train.py
SPM_ENCODE=$SCRIPTS/spm_encode.py
BPESIZE=16384
ORIG=$ROOT/iwslt17_orig
DATA=$ROOT/iwslt17.de_fr.en.bpe16k
mkdir -p "$ORIG" "$DATA"
TRAIN_MINLEN=1 # remove sentences with <1 BPE token
TRAIN_MAXLEN=250 # remove sentences with >250 BPE tokens
URLS=(
"https://wit3.fbk.eu/archive/2017-01-trnted/texts/de/en/de-en.tgz"
"https://wit3.fbk.eu/archive/2017-01-trnted/texts/fr/en/fr-en.tgz"
)
ARCHIVES=(
"de-en.tgz"
"fr-en.tgz"
)
VALID_SETS=(
"IWSLT17.TED.dev2010.de-en IWSLT17.TED.tst2010.de-en IWSLT17.TED.tst2011.de-en IWSLT17.TED.tst2012.de-en IWSLT17.TED.tst2013.de-en IWSLT17.TED.tst2014.de-en IWSLT17.TED.tst2015.de-en"
"IWSLT17.TED.dev2010.fr-en IWSLT17.TED.tst2010.fr-en IWSLT17.TED.tst2011.fr-en IWSLT17.TED.tst2012.fr-en IWSLT17.TED.tst2013.fr-en IWSLT17.TED.tst2014.fr-en IWSLT17.TED.tst2015.fr-en"
)
# download and extract data
for ((i=0;i<${#URLS[@]};++i)); do
ARCHIVE=$ORIG/${ARCHIVES[i]}
if [ -f "$ARCHIVE" ]; then
echo "$ARCHIVE already exists, skipping download"
else
URL=${URLS[i]}
wget -P "$ORIG" "$URL"
if [ -f "$ARCHIVE" ]; then
echo "$URL successfully downloaded."
else
echo "$URL not successfully downloaded."
exit 1
fi
fi
FILE=${ARCHIVE: -4}
if [ -e "$FILE" ]; then
echo "$FILE already exists, skipping extraction"
else
tar -C "$ORIG" -xzvf "$ARCHIVE"
fi
done
echo "pre-processing train data..."
for SRC in "${SRCS[@]}"; do
for LANG in "${SRC}" "${TGT}"; do
cat "$ORIG/${SRC}-${TGT}/train.tags.${SRC}-${TGT}.${LANG}" \
| grep -v '<url>' \
| grep -v '<talkid>' \
| grep -v '<keywords>' \
| grep -v '<speaker>' \
| grep -v '<reviewer' \
| grep -v '<translator' \
| grep -v '<doc' \
| grep -v '</doc>' \
| sed -e 's/<title>//g' \
| sed -e 's/<\/title>//g' \
| sed -e 's/<description>//g' \
| sed -e 's/<\/description>//g' \
| sed 's/^\s*//g' \
| sed 's/\s*$//g' \
> "$DATA/train.${SRC}-${TGT}.${LANG}"
done
done
echo "pre-processing valid data..."
for ((i=0;i<${#SRCS[@]};++i)); do
SRC=${SRCS[i]}
VALID_SET=(${VALID_SETS[i]})
for ((j=0;j<${#VALID_SET[@]};++j)); do
FILE=${VALID_SET[j]}
for LANG in "$SRC" "$TGT"; do
grep '<seg id' "$ORIG/${SRC}-${TGT}/${FILE}.${LANG}.xml" \
| sed -e 's/<seg id="[0-9]*">\s*//g' \
| sed -e 's/\s*<\/seg>\s*//g' \
| sed -e "s/\’/\'/g" \
> "$DATA/valid${j}.${SRC}-${TGT}.${LANG}"
done
done
done
# learn BPE with sentencepiece
TRAIN_FILES=$(for SRC in "${SRCS[@]}"; do echo $DATA/train.${SRC}-${TGT}.${SRC}; echo $DATA/train.${SRC}-${TGT}.${TGT}; done | tr "\n" ",")
echo "learning joint BPE over ${TRAIN_FILES}..."
python "$SPM_TRAIN" \
--input=$TRAIN_FILES \
--model_prefix=$DATA/sentencepiece.bpe \
--vocab_size=$BPESIZE \
--character_coverage=1.0 \
--model_type=bpe
# encode train/valid
echo "encoding train with learned BPE..."
for SRC in "${SRCS[@]}"; do
python "$SPM_ENCODE" \
--model "$DATA/sentencepiece.bpe.model" \
--output_format=piece \
--inputs $DATA/train.${SRC}-${TGT}.${SRC} $DATA/train.${SRC}-${TGT}.${TGT} \
--outputs $DATA/train.bpe.${SRC}-${TGT}.${SRC} $DATA/train.bpe.${SRC}-${TGT}.${TGT} \
--min-len $TRAIN_MINLEN --max-len $TRAIN_MAXLEN
done
echo "encoding valid with learned BPE..."
for ((i=0;i<${#SRCS[@]};++i)); do
SRC=${SRCS[i]}
VALID_SET=(${VALID_SETS[i]})
for ((j=0;j<${#VALID_SET[@]};++j)); do
python "$SPM_ENCODE" \
--model "$DATA/sentencepiece.bpe.model" \
--output_format=piece \
--inputs $DATA/valid${j}.${SRC}-${TGT}.${SRC} $DATA/valid${j}.${SRC}-${TGT}.${TGT} \
--outputs $DATA/valid${j}.bpe.${SRC}-${TGT}.${SRC} $DATA/valid${j}.bpe.${SRC}-${TGT}.${TGT}
done
done