louisbrulenaudet's picture
Update app.py
14eb47b verified
raw
history blame
6.78 kB
# -*- coding: utf-8 -*-
# Copyright (c) Louis Brulé Naudet. All Rights Reserved.
# This software may be used and distributed according to the terms of the License Agreement.
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gradio as gr
import polars as pl
import spaces
import torch
from typing import Tuple, List, Union
from dataset import Dataset
from similarity_search import SimilaritySearch
def setup(
description: str,
model_name: str,
device: str,
ndim: int,
metric: str,
dtype: str
) -> Tuple:
"""
Set up the model and tokenizer for a given pre-trained model ID.
Parameters
----------
description : str
A string containing additional description information.
model_name : str
Name of the pre-trained model to load.
device : str
Device to run the model on, e.g., 'cuda' or 'cpu'.
ndim : int
Dimensionality of the model.
metric : str
Metric for similarity search.
dtype : str
Data type of the model.
Returns
-------
instance : SimilaritySearch
A class dedicated to encoding text data, quantizing embeddings, and managing indices for efficient similarity search.
dataset : datasets.Dataset
The loaded dataset.
dataframe: pl.DataFrame
A Polars DataFrame representing the dataset.
description : str
A string containing additional description information.
"""
try:
instance = SimilaritySearch(
model_name=model_name,
device=device,
ndim=ndim,
metric=metric,
dtype=dtype
)
instance.load_usearch_index_view(
index_path="./usearch_int8.index",
)
instance.load_faiss_index(
index_path="./faiss_ubinary.index",
)
dataset = Dataset.load(
dataset_path="./legalkit.hf"
)
dataframe = Dataset.convert_to_polars(
dataset=dataset
)
return instance, dataset, dataframe, description
except Exception as e:
error_message = f"An error occurred during setup: {str(e)}"
raise RuntimeError(error_message) from e
DESCRIPTION = """\
# LegalKit Retrieval, a binary Search with Scalar (int8) Rescoring through French legal codes
This space showcases the [tsdae-lemone-mbert-base](https://huggingface.co/louisbrulenaudet/tsdae-lemone-mbert-base)
model by Louis Brulé Naudet, a sentence embedding model based on BERT fitted using Transformer-based Sequential Denoising Auto-Encoder for unsupervised sentence embedding learning with one objective : french legal domain adaptation.
This process is designed to be memory efficient and fast, with the binary index being small enough to fit in memory and the int8 index being loaded as a view to save memory.
Additionally, the binary index is much faster (up to 32x) to search than the float32 index, while the rescoring is also extremely efficient.
"""
instance, dataset, dataframe, DESCRIPTION = setup(
model_name="louisbrulenaudet/tsdae-lemone-mbert-base",
description=DESCRIPTION,
device="cpu",
ndim=768,
metric="ip",
dtype="i8"
)
@spaces.GPU
def search(
query:str,
top_k:int,
rescore_multiplier:int
) -> any:
"""
Perform a search operation using the initialized GPU space.
Parameters
----------
query : str
The query for which similarity search is performed.
top_k : int
The number of top results to return.
rescore_multiplier : int
A multiplier for rescore operation.
Returns
-------
any
The search results in a suitable format.
Notes
-----
This function performs a search operation using the initialized GPU space
and returns the search results in a format compatible with the provided
space.
Examples
--------
>>> results = search(query="example query", top_k=10, rescore_multiplier=2)
"""
global instance
global dataset
global dataframe
top_k_scores, top_k_indices = instance.search(
query=query,
top_k=top_k,
rescore_multiplier=rescore_multiplier
)
scores_df = pl.DataFrame(
{
"index": top_k_indices,
"score": top_k_scores
}
).with_columns(
pl.col("index").cast(pl.UInt32)
)
results_df = dataframe.filter(
pl.col("index").is_in(top_k_indices)
).join(
scores_df,
how="inner",
on="index"
).sort(
by="score",
descending=True
).select(
[
"score",
"input",
"output",
"start",
"expiration"
]
)
return gr.Dataframe(
value=results_df,
visible=True
)
with gr.Blocks(title="Quantized Retrieval") as demo:
gr.Markdown(
value=DESCRIPTION
)
gr.DuplicateButton()
with gr.Row():
with gr.Column():
query = gr.Textbox(
label="Query for French legal codes articles",
placeholder="Enter a query to search for relevant texts from the French law.",
)
with gr.Row():
with gr.Column(scale=2):
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=20,
label="Number of documents to retrieve",
info="Number of documents to retrieve from the binary search.",
)
with gr.Column(scale=2):
rescore_multiplier = gr.Slider(
minimum=1,
maximum=10,
step=1,
value=4,
label="Rescore multiplier",
info="Search for 'rescore_multiplier' as many documents to rescore.",
)
search_button = gr.Button(value="Search")
with gr.Row():
with gr.Column():
output = gr.Dataframe(
visible=False,
type="polars"
)
query.submit(
search,
inputs=[
query,
top_k,
rescore_multiplier
],
outputs=output
)
search_button.click(
search,
inputs=[
query,
top_k,
rescore_multiplier
],
outputs=output
)
if __name__ == "__main__":
demo.queue().launch(
show_api=False
)