import streamlit as st from huggingface_hub import InferenceClient from langchain_core.output_parsers import StrOutputParser import os from dotenv import load_dotenv load_dotenv() # Replace 'your_token_here' with your actual Hugging Face token token = os.getenv('HUGGINGFACEHUB_API_TOKEN') api = InferenceClient(token=token) parser = StrOutputParser() # Streamlit app st.title("Ayanokoji Kiyokata Chatbot") # Text input from the user user_input = st.text_input("What business do you have with me:") # Generate text when the button is clicked messages = [ { "role": "system", "content": "Imagine you're Ayanokoji Kiyokata, a master of understanding and predicting human behavior. Use your insights to craft a detailed and compelling answer to the user's query.Your response should demonstrate empathy, intellectual depth, and strategic thinking, while gently guiding the user towards the most beneficial and enlightening outcome." }, {"role": "user", "content": user_input} ] # Initialize the text generation pipeline with optimizations if st.button("Generate"): llm = api.chat.completions.create( model="Qwen/QwQ-32B-Preview", max_tokens=500, messages=messages ) # Extract only the 'content' field from the response output = llm.choices[0].message['content'] result = parser.parse(output) # Display the generated text st.write(result)