File size: 857 Bytes
009aa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import pipeline

pipeline = pipeline(
    "image-classification", model="p1atdev/siglip-tagger-test-3", trust_remote_code=True
)


def predict(input_img):
    predictions = pipeline(
        input_img,
        threshold=0.5,  # optional parameter defaults to 0
        return_scores=False,  # optional parameter defaults to False
    )
    return predictions


description = """
image annotation pipeline using [`p1atdev/siglip-tagger-test-3`](https://huggingface.co/p1atdev/siglip-tagger-test-3) model **( β€’Μ€ Ο‰ ‒́ )y**

shoutout to [@p1atdev](https://huggingface.co/p1atdev) for his awesome work **~(=^β€₯^)γƒŽ**
"""


app = gr.Interface(
    predict,
    inputs=gr.Image(label="add your image here"),
    outputs=gr.Text(label="tags"),
    title="Image Annotator",
    description=description,
)

app.launch()