loztcontrol commited on
Commit
e44dedb
1 Parent(s): b772702

Updating app.py and txt

Browse files
Files changed (2) hide show
  1. app.py +46 -136
  2. requirements.txt +2 -4
app.py CHANGED
@@ -1,142 +1,52 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
  import torch
7
-
8
- device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
-
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
15
-
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
-
19
- MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
-
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
-
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
-
28
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
 
40
- return image, seed
41
-
42
- examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
- ]
47
 
48
- css="""
49
- #col-container {
50
- margin: 0 auto;
51
- max-width: 640px;
52
- }
53
- """
54
-
55
- with gr.Blocks(css=css) as demo:
56
-
57
- with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
 
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
- seed = gr.Slider(
86
- label="Seed",
87
- minimum=0,
88
- maximum=MAX_SEED,
89
- step=1,
90
- value=0,
91
- )
92
-
93
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
- with gr.Row():
96
-
97
- width = gr.Slider(
98
- label="Width",
99
- minimum=256,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=1024, #Replace with defaults that work for your model
103
- )
104
-
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024, #Replace with defaults that work for your model
111
- )
112
-
113
- with gr.Row():
114
-
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=2, #Replace with defaults that work for your model
129
- )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
- gr.on(
136
- triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
140
- )
141
 
142
- demo.queue().launch()
 
 
 
 
 
 
1
  import torch
2
+ import gradio as gr
3
+ from diffusers import StableDiffusionPipeline
4
+
5
+ # Cargar el modelo Stable Diffusion
6
+ model_id = "stabilityai/stable-diffusion-2-1"
7
+ pipe = StableDiffusionPipeline.from_pretrained(model_id)
8
+ pipe.to("cuda") # Si estás usando GPU
9
+
10
+ # Función para generar imágenes
11
+ def generate_image(prompt, style, width, height, guidance_scale, steps, seed):
12
+ # Configurar el generador de semillas
13
+ generator = torch.manual_seed(seed) if seed is not None else None
14
+
15
+ # Ajustar el estilo en función del input del usuario
16
+ if style == "Realismo":
17
+ prompt += ", realistic, high detail, photorealistic"
18
+ elif style == "Arte digital":
19
+ prompt += ", digital art, sharp details, vibrant colors"
20
+ elif style == "Ciencia Ficción":
21
+ prompt += ", sci-fi, futuristic, high-tech"
22
+ elif style == "Surrealismo":
23
+ prompt += ", surreal, dream-like, abstract"
24
+
25
+ # Generar la imagen con Stable Diffusion
26
+ image = pipe(prompt, height=height, width=width, guidance_scale=guidance_scale,
27
+ num_inference_steps=steps, generator=generator).images[0]
28
+ return image
29
+
30
+ # Configuración de la interfaz de Gradio
31
+ with gr.Blocks() as demo:
32
+ gr.Markdown("# Generador de Imágenes estilo MidJourney")
33
+ prompt = gr.Textbox(label="Descripción (Prompt)", placeholder="Describe la imagen...")
34
+ style = gr.Dropdown(choices=["Realismo", "Arte digital", "Ciencia Ficción", "Surrealismo"], label="Estilo", value="Realismo")
35
+ width = gr.Slider(512, 1024, step=64, label="Ancho", value=768)
36
+ height = gr.Slider(512, 1024, step=64, label="Altura", value=768)
37
+ guidance_scale = gr.Slider(5, 20, step=0.5, label="Nivel de guía del prompt", value=7.5)
38
+ steps = gr.Slider(10, 100, step=5, label="Número de pasos de inferencia", value=50)
39
+ seed = gr.Number(label="Semilla (dejar vacío para aleatorio)", value=None, optional=True)
40
 
41
+ # Botón para generar la imagen
42
+ btn = gr.Button("Generar imagen")
 
 
 
 
 
 
 
43
 
44
+ # Salida de la imagen generada
45
+ output = gr.Image(label="Imagen generada")
 
 
 
 
 
46
 
47
+ # Vincular los inputs y outputs
48
+ btn.click(generate_image, inputs=[prompt, style, width, height, guidance_scale, steps, seed], outputs=output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ # Lanzar la aplicación Gradio
51
+ demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
requirements.txt CHANGED
@@ -1,6 +1,4 @@
1
- accelerate
2
  diffusers
3
- invisible_watermark
4
- torch
5
  transformers
6
- xformers
 
1
+ torch>=1.9.0
2
  diffusers
 
 
3
  transformers
4
+ gradio