Add app
Browse files- app.py +454 -0
- requirements.txt +109 -0
app.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import re
|
7 |
+
from abc import abstractmethod
|
8 |
+
from collections import Counter
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Callable, Dict, Iterable, List, Optional, Type, TypedDict, TypeVar
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import nltk
|
14 |
+
import numpy as np
|
15 |
+
import tqdm
|
16 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
17 |
+
from nlp4web_codebase.ir.models import BaseRetriever
|
18 |
+
from scipy.sparse._csc import csc_matrix
|
19 |
+
|
20 |
+
|
21 |
+
class Hit(TypedDict):
|
22 |
+
cid: str
|
23 |
+
score: float
|
24 |
+
text: str
|
25 |
+
|
26 |
+
|
27 |
+
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
|
28 |
+
return_type = List[Hit]
|
29 |
+
|
30 |
+
LANGUAGE = "english"
|
31 |
+
nltk.download("stopwords", quiet=True)
|
32 |
+
from nltk.corpus import stopwords as nltk_stopwords
|
33 |
+
|
34 |
+
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
|
35 |
+
stopwords = set(nltk_stopwords.words(LANGUAGE))
|
36 |
+
|
37 |
+
|
38 |
+
def word_splitting(text: str) -> List[str]:
|
39 |
+
return word_splitter(text.lower())
|
40 |
+
|
41 |
+
|
42 |
+
def lemmatization(words: List[str]) -> List[str]:
|
43 |
+
return words # We ignore lemmatization here for simplicity
|
44 |
+
|
45 |
+
|
46 |
+
def simple_tokenize(text: str) -> List[str]:
|
47 |
+
words = word_splitting(text)
|
48 |
+
tokenized = list(filter(lambda w: w not in stopwords, words))
|
49 |
+
tokenized = lemmatization(tokenized)
|
50 |
+
return tokenized
|
51 |
+
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class PostingList:
|
55 |
+
term: str # The term
|
56 |
+
docid_postings: List[
|
57 |
+
int
|
58 |
+
] # docid_postings[i] means the docid (int) of the i-th associated posting
|
59 |
+
tweight_postings: List[
|
60 |
+
float
|
61 |
+
] # tweight_postings[i] means the term weight (float) of the i-th associated posting
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class InvertedIndex:
|
66 |
+
posting_lists: List[PostingList] # docid -> posting_list
|
67 |
+
vocab: Dict[str, int]
|
68 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
69 |
+
collection_ids: List[str] # docid -> collection_id
|
70 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
71 |
+
|
72 |
+
def save(self, output_dir: str) -> None:
|
73 |
+
os.makedirs(output_dir, exist_ok=True)
|
74 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
75 |
+
pickle.dump(self, f)
|
76 |
+
|
77 |
+
@classmethod
|
78 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
79 |
+
index = cls(
|
80 |
+
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
|
81 |
+
)
|
82 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
83 |
+
index = pickle.load(f)
|
84 |
+
return index
|
85 |
+
|
86 |
+
|
87 |
+
T = TypeVar("T", bound="InvertedIndex")
|
88 |
+
|
89 |
+
|
90 |
+
# The output of the counting function:
|
91 |
+
@dataclass
|
92 |
+
class Counting:
|
93 |
+
posting_lists: List[PostingList]
|
94 |
+
vocab: Dict[str, int]
|
95 |
+
cid2docid: Dict[str, int]
|
96 |
+
collection_ids: List[str]
|
97 |
+
dfs: List[int] # tid -> df
|
98 |
+
dls: List[int] # docid -> doc length
|
99 |
+
avgdl: float
|
100 |
+
nterms: int
|
101 |
+
doc_texts: Optional[List[str]] = None
|
102 |
+
|
103 |
+
|
104 |
+
def run_counting(
|
105 |
+
documents: Iterable[Document],
|
106 |
+
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
107 |
+
store_raw: bool = True, # store the document text in doc_texts
|
108 |
+
ndocs: Optional[int] = None,
|
109 |
+
show_progress_bar: bool = True,
|
110 |
+
) -> Counting:
|
111 |
+
"""Counting TFs, DFs, doc_lengths, etc."""
|
112 |
+
posting_lists: List[PostingList] = []
|
113 |
+
vocab: Dict[str, int] = {}
|
114 |
+
cid2docid: Dict[str, int] = {}
|
115 |
+
collection_ids: List[str] = []
|
116 |
+
dfs: List[int] = [] # tid -> df
|
117 |
+
dls: List[int] = [] # docid -> doc length
|
118 |
+
nterms: int = 0
|
119 |
+
doc_texts: Optional[List[str]] = []
|
120 |
+
for doc in tqdm.tqdm(
|
121 |
+
documents,
|
122 |
+
desc="Counting",
|
123 |
+
total=ndocs,
|
124 |
+
disable=not show_progress_bar,
|
125 |
+
):
|
126 |
+
if doc.collection_id in cid2docid:
|
127 |
+
continue
|
128 |
+
collection_ids.append(doc.collection_id)
|
129 |
+
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
|
130 |
+
toks = tokenize_fn(doc.text)
|
131 |
+
tok2tf = Counter(toks)
|
132 |
+
dls.append(sum(tok2tf.values()))
|
133 |
+
for tok, tf in tok2tf.items():
|
134 |
+
nterms += tf
|
135 |
+
tid = vocab.get(tok, None)
|
136 |
+
if tid is None:
|
137 |
+
posting_lists.append(
|
138 |
+
PostingList(term=tok, docid_postings=[], tweight_postings=[])
|
139 |
+
)
|
140 |
+
tid = vocab.setdefault(tok, len(vocab))
|
141 |
+
posting_lists[tid].docid_postings.append(docid)
|
142 |
+
posting_lists[tid].tweight_postings.append(tf)
|
143 |
+
if tid < len(dfs):
|
144 |
+
dfs[tid] += 1
|
145 |
+
else:
|
146 |
+
dfs.append(0)
|
147 |
+
if store_raw:
|
148 |
+
doc_texts.append(doc.text)
|
149 |
+
else:
|
150 |
+
doc_texts = None
|
151 |
+
return Counting(
|
152 |
+
posting_lists=posting_lists,
|
153 |
+
vocab=vocab,
|
154 |
+
cid2docid=cid2docid,
|
155 |
+
collection_ids=collection_ids,
|
156 |
+
dfs=dfs,
|
157 |
+
dls=dls,
|
158 |
+
avgdl=sum(dls) / len(dls),
|
159 |
+
nterms=nterms,
|
160 |
+
doc_texts=doc_texts,
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
@dataclass
|
165 |
+
class BM25Index(InvertedIndex):
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def tokenize(text: str) -> List[str]:
|
169 |
+
return simple_tokenize(text)
|
170 |
+
|
171 |
+
@staticmethod
|
172 |
+
def cache_term_weights(
|
173 |
+
posting_lists: List[PostingList],
|
174 |
+
total_docs: int,
|
175 |
+
avgdl: float,
|
176 |
+
dfs: List[int],
|
177 |
+
dls: List[int],
|
178 |
+
k1: float,
|
179 |
+
b: float,
|
180 |
+
) -> None:
|
181 |
+
"""Compute term weights and caching"""
|
182 |
+
|
183 |
+
N = total_docs
|
184 |
+
for tid, posting_list in enumerate(
|
185 |
+
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
|
186 |
+
):
|
187 |
+
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
|
188 |
+
for i in range(len(posting_list.docid_postings)):
|
189 |
+
docid = posting_list.docid_postings[i]
|
190 |
+
tf = posting_list.tweight_postings[i]
|
191 |
+
dl = dls[docid]
|
192 |
+
regularized_tf = BM25Index.calc_regularized_tf(
|
193 |
+
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
|
194 |
+
)
|
195 |
+
posting_list.tweight_postings[i] = regularized_tf * idf
|
196 |
+
|
197 |
+
@staticmethod
|
198 |
+
def calc_regularized_tf(
|
199 |
+
tf: int, dl: float, avgdl: float, k1: float, b: float
|
200 |
+
) -> float:
|
201 |
+
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
|
202 |
+
|
203 |
+
@staticmethod
|
204 |
+
def calc_idf(df: int, N: int):
|
205 |
+
return math.log(1 + (N - df + 0.5) / (df + 0.5))
|
206 |
+
|
207 |
+
@classmethod
|
208 |
+
def build_from_documents(
|
209 |
+
cls: Type[BM25Index],
|
210 |
+
documents: Iterable[Document],
|
211 |
+
store_raw: bool = True,
|
212 |
+
output_dir: Optional[str] = None,
|
213 |
+
ndocs: Optional[int] = None,
|
214 |
+
show_progress_bar: bool = True,
|
215 |
+
k1: float = 0.9,
|
216 |
+
b: float = 0.4,
|
217 |
+
) -> BM25Index:
|
218 |
+
# Counting TFs, DFs, doc_lengths, etc.:
|
219 |
+
counting = run_counting(
|
220 |
+
documents=documents,
|
221 |
+
tokenize_fn=BM25Index.tokenize,
|
222 |
+
store_raw=store_raw,
|
223 |
+
ndocs=ndocs,
|
224 |
+
show_progress_bar=show_progress_bar,
|
225 |
+
)
|
226 |
+
|
227 |
+
# Compute term weights and caching:
|
228 |
+
posting_lists = counting.posting_lists
|
229 |
+
total_docs = len(counting.cid2docid)
|
230 |
+
BM25Index.cache_term_weights(
|
231 |
+
posting_lists=posting_lists,
|
232 |
+
total_docs=total_docs,
|
233 |
+
avgdl=counting.avgdl,
|
234 |
+
dfs=counting.dfs,
|
235 |
+
dls=counting.dls,
|
236 |
+
k1=k1,
|
237 |
+
b=b,
|
238 |
+
)
|
239 |
+
|
240 |
+
# Assembly and save:
|
241 |
+
index = BM25Index(
|
242 |
+
posting_lists=posting_lists,
|
243 |
+
vocab=counting.vocab,
|
244 |
+
cid2docid=counting.cid2docid,
|
245 |
+
collection_ids=counting.collection_ids,
|
246 |
+
doc_texts=counting.doc_texts,
|
247 |
+
)
|
248 |
+
return index
|
249 |
+
|
250 |
+
|
251 |
+
@dataclass
|
252 |
+
class CSCInvertedIndex:
|
253 |
+
posting_lists_matrix: csc_matrix # docid -> posting_list
|
254 |
+
vocab: Dict[str, int]
|
255 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
256 |
+
collection_ids: List[str] # docid -> collection_id
|
257 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
258 |
+
|
259 |
+
def save(self, output_dir: str) -> None:
|
260 |
+
os.makedirs(output_dir, exist_ok=True)
|
261 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
262 |
+
pickle.dump(self, f)
|
263 |
+
|
264 |
+
@classmethod
|
265 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
266 |
+
index = cls(
|
267 |
+
posting_lists_matrix=None,
|
268 |
+
vocab={},
|
269 |
+
cid2docid={},
|
270 |
+
collection_ids=[],
|
271 |
+
doc_texts=None,
|
272 |
+
)
|
273 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
274 |
+
index = pickle.load(f)
|
275 |
+
return index
|
276 |
+
|
277 |
+
|
278 |
+
@dataclass
|
279 |
+
class CSCBM25Index(CSCInvertedIndex):
|
280 |
+
|
281 |
+
@staticmethod
|
282 |
+
def tokenize(text: str) -> List[str]:
|
283 |
+
return simple_tokenize(text)
|
284 |
+
|
285 |
+
@staticmethod
|
286 |
+
def cache_term_weights(
|
287 |
+
posting_lists: List[PostingList],
|
288 |
+
total_docs: int,
|
289 |
+
avgdl: float,
|
290 |
+
dfs: List[int],
|
291 |
+
dls: List[int],
|
292 |
+
k1: float,
|
293 |
+
b: float,
|
294 |
+
) -> csc_matrix:
|
295 |
+
"""Compute term weights and caching"""
|
296 |
+
data = []
|
297 |
+
indices = []
|
298 |
+
indptr = [0]
|
299 |
+
max_docid = 0
|
300 |
+
for tid, posting_list in enumerate(
|
301 |
+
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
|
302 |
+
):
|
303 |
+
idf = CSCBM25Index.calc_idf(df=dfs[tid], N=total_docs)
|
304 |
+
for i in range(len(posting_list.docid_postings)):
|
305 |
+
docid = posting_list.docid_postings[i]
|
306 |
+
if docid > max_docid:
|
307 |
+
max_docid = docid
|
308 |
+
tf = posting_list.tweight_postings[i]
|
309 |
+
dl = dls[docid]
|
310 |
+
regularized_tf = CSCBM25Index.calc_regularized_tf(
|
311 |
+
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
|
312 |
+
)
|
313 |
+
result = regularized_tf * idf
|
314 |
+
posting_list.tweight_postings[i] = result # TODO?
|
315 |
+
if result != 0:
|
316 |
+
data.append(result)
|
317 |
+
indices.append(docid)
|
318 |
+
indptr.append(len(data))
|
319 |
+
|
320 |
+
shape = (max_docid, len(posting_lists))
|
321 |
+
return csc_matrix((data, indices, indptr), shape=shape)
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
def calc_regularized_tf(
|
325 |
+
tf: int, dl: float, avgdl: float, k1: float, b: float
|
326 |
+
) -> float:
|
327 |
+
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
|
328 |
+
|
329 |
+
@staticmethod
|
330 |
+
def calc_idf(df: int, N: int):
|
331 |
+
return math.log(1 + (N - df + 0.5) / (df + 0.5))
|
332 |
+
|
333 |
+
@classmethod
|
334 |
+
def build_from_documents(
|
335 |
+
cls: Type[CSCBM25Index],
|
336 |
+
documents: Iterable[Document],
|
337 |
+
store_raw: bool = True,
|
338 |
+
output_dir: Optional[str] = None,
|
339 |
+
ndocs: Optional[int] = None,
|
340 |
+
show_progress_bar: bool = True,
|
341 |
+
k1: float = 0.9,
|
342 |
+
b: float = 0.4,
|
343 |
+
) -> CSCBM25Index:
|
344 |
+
# Counting TFs, DFs, doc_lengths, etc.:
|
345 |
+
counting = run_counting(
|
346 |
+
documents=documents,
|
347 |
+
tokenize_fn=CSCBM25Index.tokenize,
|
348 |
+
store_raw=store_raw,
|
349 |
+
ndocs=ndocs,
|
350 |
+
show_progress_bar=show_progress_bar,
|
351 |
+
)
|
352 |
+
|
353 |
+
# Compute term weights and caching:
|
354 |
+
posting_lists = counting.posting_lists
|
355 |
+
total_docs = len(counting.cid2docid)
|
356 |
+
posting_lists_matrix = CSCBM25Index.cache_term_weights(
|
357 |
+
posting_lists=posting_lists,
|
358 |
+
total_docs=total_docs,
|
359 |
+
avgdl=counting.avgdl,
|
360 |
+
dfs=counting.dfs,
|
361 |
+
dls=counting.dls,
|
362 |
+
k1=k1,
|
363 |
+
b=b,
|
364 |
+
)
|
365 |
+
|
366 |
+
# Assembly and save:
|
367 |
+
index = CSCBM25Index(
|
368 |
+
posting_lists_matrix=posting_lists_matrix,
|
369 |
+
vocab=counting.vocab,
|
370 |
+
cid2docid=counting.cid2docid,
|
371 |
+
collection_ids=counting.collection_ids,
|
372 |
+
doc_texts=counting.doc_texts,
|
373 |
+
)
|
374 |
+
return index
|
375 |
+
|
376 |
+
|
377 |
+
class BaseCSCInvertedIndexRetriever(BaseRetriever):
|
378 |
+
|
379 |
+
@property
|
380 |
+
@abstractmethod
|
381 |
+
def index_class(self) -> Type[CSCInvertedIndex]:
|
382 |
+
pass
|
383 |
+
|
384 |
+
def __init__(self, index_dir: str) -> None:
|
385 |
+
self.index = self.index_class.from_saved(index_dir)
|
386 |
+
|
387 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
388 |
+
toks = self.index.tokenize(query)
|
389 |
+
target_docid = self.index.cid2docid[cid]
|
390 |
+
term_weights = {}
|
391 |
+
for tok in toks:
|
392 |
+
if tok not in self.index.vocab:
|
393 |
+
continue
|
394 |
+
tid = self.index.vocab[tok]
|
395 |
+
weight = self.index.posting_lists_matrix[target_docid, tid]
|
396 |
+
if weight != 0:
|
397 |
+
term_weights[tok] = weight
|
398 |
+
return term_weights
|
399 |
+
|
400 |
+
def score(self, query: str, cid: str) -> float:
|
401 |
+
return sum(self.get_term_weights(query=query, cid=cid).values())
|
402 |
+
|
403 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
404 |
+
toks = self.index.tokenize(query)
|
405 |
+
scores = np.zeros(self.index.posting_lists_matrix.shape[0])
|
406 |
+
for tok in toks:
|
407 |
+
if tok not in self.index.vocab:
|
408 |
+
continue
|
409 |
+
tid = self.index.vocab[tok]
|
410 |
+
col = self.index.posting_lists_matrix[:, tid].toarray().flatten()
|
411 |
+
scores += col
|
412 |
+
|
413 |
+
docids = np.argsort(scores)[::-1][:topk]
|
414 |
+
scores = scores[docids]
|
415 |
+
return {
|
416 |
+
self.index.collection_ids[docid]: score
|
417 |
+
for docid, score in zip(docids, scores)
|
418 |
+
}
|
419 |
+
|
420 |
+
|
421 |
+
class CSCBM25Retriever(BaseCSCInvertedIndexRetriever):
|
422 |
+
|
423 |
+
@property
|
424 |
+
def index_class(self) -> Type[CSCBM25Index]:
|
425 |
+
return CSCBM25Index
|
426 |
+
|
427 |
+
|
428 |
+
if __name__ == "__main__":
|
429 |
+
top_k = 10
|
430 |
+
csc_bm25_retriever = CSCBM25Retriever(index_dir="output/csc_bm25_index")
|
431 |
+
|
432 |
+
def query(query: str) -> List[Hit]:
|
433 |
+
hits = []
|
434 |
+
for cid, score in csc_bm25_retriever.retrieve(query).items():
|
435 |
+
hit = Hit(
|
436 |
+
cid=cid,
|
437 |
+
score=score,
|
438 |
+
text=csc_bm25_retriever.index.doc_texts[
|
439 |
+
csc_bm25_retriever.index.cid2docid[cid]
|
440 |
+
],
|
441 |
+
)
|
442 |
+
hits.append(hit)
|
443 |
+
return hits
|
444 |
+
|
445 |
+
demo = gr.Interface(
|
446 |
+
fn=query,
|
447 |
+
inputs=gr.Textbox(lines=1, label="Query"),
|
448 |
+
# outputs=["text" for _ in range(top_k)],
|
449 |
+
outputs=[gr.Textbox(label=f"Result {i+1}") for i in range(top_k)],
|
450 |
+
title="BM25 Retriever",
|
451 |
+
description="Enter query",
|
452 |
+
)
|
453 |
+
|
454 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
aiohappyeyeballs==2.4.3
|
3 |
+
aiohttp==3.10.10
|
4 |
+
aiosignal==1.3.1
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.6.2.post1
|
7 |
+
asttokens==2.4.1
|
8 |
+
attrs==24.2.0
|
9 |
+
audioop-lts==0.2.1
|
10 |
+
certifi==2024.8.30
|
11 |
+
charset-normalizer==3.4.0
|
12 |
+
click==8.1.7
|
13 |
+
comm==0.2.2
|
14 |
+
contourpy==1.3.0
|
15 |
+
cycler==0.12.1
|
16 |
+
datasets==3.0.1
|
17 |
+
debugpy==1.8.7
|
18 |
+
decorator==5.1.1
|
19 |
+
dill==0.3.8
|
20 |
+
exceptiongroup==1.2.2
|
21 |
+
executing==2.1.0
|
22 |
+
fastapi==0.115.4
|
23 |
+
ffmpy==0.4.0
|
24 |
+
filelock==3.16.1
|
25 |
+
fonttools==4.54.1
|
26 |
+
frozenlist==1.5.0
|
27 |
+
fsspec==2024.6.1
|
28 |
+
gradio==5.5.0
|
29 |
+
gradio_client==1.4.2
|
30 |
+
h11==0.14.0
|
31 |
+
httpcore==1.0.6
|
32 |
+
httpx==0.27.2
|
33 |
+
huggingface-hub==0.26.2
|
34 |
+
idna==3.10
|
35 |
+
importlib_metadata==8.5.0
|
36 |
+
ipykernel==6.29.5
|
37 |
+
ipython==8.29.0
|
38 |
+
jedi==0.19.1
|
39 |
+
Jinja2==3.1.4
|
40 |
+
joblib==1.4.2
|
41 |
+
jupyter_client==8.6.3
|
42 |
+
jupyter_core==5.7.2
|
43 |
+
kiwisolver==1.4.7
|
44 |
+
markdown-it-py==3.0.0
|
45 |
+
MarkupSafe==2.1.5
|
46 |
+
matplotlib==3.9.2
|
47 |
+
matplotlib-inline==0.1.7
|
48 |
+
mdurl==0.1.2
|
49 |
+
multidict==6.1.0
|
50 |
+
multiprocess==0.70.16
|
51 |
+
nest_asyncio==1.6.0
|
52 |
+
nlp4web-codebase @ git+https://github.com/kwang2049/nlp4web-codebase.git@83f9afbbf7e372c116fdd04997a96449007f861f
|
53 |
+
nltk==3.8.1
|
54 |
+
numpy==1.26.4
|
55 |
+
orjson==3.10.11
|
56 |
+
packaging==24.1
|
57 |
+
pandas==2.2.2
|
58 |
+
parso==0.8.4
|
59 |
+
pexpect==4.9.0
|
60 |
+
pickleshare==0.7.5
|
61 |
+
pillow==11.0.0
|
62 |
+
pip==24.2
|
63 |
+
platformdirs==4.3.6
|
64 |
+
prompt_toolkit==3.0.48
|
65 |
+
propcache==0.2.0
|
66 |
+
psutil==6.1.0
|
67 |
+
ptyprocess==0.7.0
|
68 |
+
pure_eval==0.2.3
|
69 |
+
pyarrow==18.0.0
|
70 |
+
pydantic==2.9.2
|
71 |
+
pydantic_core==2.23.4
|
72 |
+
pydub==0.25.1
|
73 |
+
Pygments==2.18.0
|
74 |
+
pyparsing==3.2.0
|
75 |
+
python-dateutil==2.9.0
|
76 |
+
python-multipart==0.0.12
|
77 |
+
pytrec_eval==0.5
|
78 |
+
pytz==2024.2
|
79 |
+
PyYAML==6.0.2
|
80 |
+
pyzmq==26.2.0
|
81 |
+
regex==2024.9.11
|
82 |
+
requests==2.32.3
|
83 |
+
rich==13.9.4
|
84 |
+
ruff==0.7.2
|
85 |
+
safehttpx==0.1.1
|
86 |
+
scipy==1.13.1
|
87 |
+
semantic-version==2.10.0
|
88 |
+
setuptools==75.1.0
|
89 |
+
shellingham==1.5.4
|
90 |
+
six==1.16.0
|
91 |
+
sniffio==1.3.1
|
92 |
+
stack-data==0.6.2
|
93 |
+
starlette==0.41.2
|
94 |
+
tomlkit==0.12.0
|
95 |
+
tornado==6.4.1
|
96 |
+
tqdm==4.66.5
|
97 |
+
traitlets==5.14.3
|
98 |
+
typer==0.12.5
|
99 |
+
typing_extensions==4.12.2
|
100 |
+
tzdata==2024.2
|
101 |
+
ujson==5.10.0
|
102 |
+
urllib3==2.2.3
|
103 |
+
uvicorn==0.32.0
|
104 |
+
wcwidth==0.2.13
|
105 |
+
websockets==12.0
|
106 |
+
wheel==0.44.0
|
107 |
+
xxhash==3.5.0
|
108 |
+
yarl==1.17.1
|
109 |
+
zipp==3.20.2
|