import gradio as gr import pandas as pd from transformers import pipeline # Initialize the zero-shot classifier classifier = pipeline('zero-shot-classification', model='distilbert-base-uncased') # Define the possible categories (more granular categories) candidate_labels = ["ACL Tear", "Meniscus Tear", "Achilles Tear", "Fracture", "Hamstring", "Foot", "Shoulder", "Hip", "Calf", "Hand", "Wrist"] def classify_injuries(file): # Load the uploaded CSV file df = pd.read_csv(file.name) # Limit to a sample (e.g., first 100 rows) if necessary for performance new_df = df.head(100).copy() # Apply zero-shot classification to each note in the 'Notes' column classifications = classifier(new_df['Notes'].tolist(), candidate_labels) # Add the classification results to the DataFrame new_df['Classifications'] = classifications new_df['Top Classification'] = new_df['Classifications'].apply(lambda x: x['labels'][0] if isinstance(x, dict) else None) new_df['Top Score'] = new_df['Classifications'].apply(lambda x: x['scores'][0] if isinstance(x, dict) else None) # Initialize the 'Specific Injury' column with default value new_df['Specific Injury'] = None # Define a function to determine the specific injury based on keywords def extract_specific_injury(note, injury): note = note.lower() if "left" in note: return f"left {injury.lower()} injury" elif "right" in note: return f"right {injury.lower()} injury" else: return f"{injury.lower()} injury" # Apply specific injury classification based on keywords for injury in candidate_labels: new_df.loc[new_df['Top Classification'].str.contains(injury, case=False, na=False), 'Specific Injury'] = \ new_df['Notes'].apply(lambda x: extract_specific_injury(x, injury) if injury.lower() in x.lower() else None) # Sort by 'Top Score' in descending order new_df_sorted = new_df.sort_values(by='Top Score', ascending=False) # Return a subset of columns for clarity return new_df_sorted[['Notes', 'Top Classification', 'Top Score', 'Specific Injury']] # Set up the Gradio interface iface = gr.Interface( fn=classify_injuries, inputs=gr.File(label="Upload CSV File (must have a 'Notes' column)"), outputs="dataframe", title="Injury Classification App", description="Upload a CSV file with injury notes. The app classifies each note based on specified injury types and provides specific classifications where possible." ) # Launch the Gradio app iface.launch()