File size: 7,063 Bytes
f61f538
10dbfbb
cc76a88
f61f538
10dbfbb
f61f538
 
398f6f3
f61f538
398f6f3
 
 
 
631d856
 
 
 
f61f538
398f6f3
f61f538
 
 
 
398f6f3
 
f61f538
398f6f3
f61f538
 
6ed95ae
 
 
 
 
 
398f6f3
 
 
6aa0b7b
398f6f3
 
6ed95ae
a260fa0
 
c55a83f
 
500ab62
 
a260fa0
 
 
 
 
 
 
 
4bae60c
a260fa0
500ab62
a260fa0
 
 
 
 
 
f6269f3
a260fa0
 
 
 
 
 
 
 
 
 
f8494a3
 
 
 
 
 
 
 
 
 
 
 
f61f538
398f6f3
3d7e4b1
 
398f6f3
631d856
398f6f3
631d856
 
 
 
398f6f3
a260fa0
 
 
 
 
 
 
 
 
398f6f3
631d856
398f6f3
a38f207
 
 
 
f8494a3
a38f207
374ff5c
a260fa0
 
a38f207
8ae3341
398f6f3
a260fa0
 
 
 
 
 
f61f538
 
6ed95ae
 
 
 
e292a98
 
95270f3
f61f538
 
 
6ed95ae
f61f538
001b50d
f61f538
 
6ed95ae
f61f538
 
 
6ed95ae
f61f538
001b50d
f61f538
 
95270f3
f61f538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ba09f
 
f61f538
 
 
 
6ed95ae
f61f538
 
 
6ed95ae
f61f538
 
 
6ed95ae
 
 
 
 
 
 
f61f538
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer
from transformers.generation import LogitsProcessor
from threading import Thread
import gradio as gr


print(f"Starting to load the model to memory")

tokenizer = AutoTokenizer.from_pretrained("nort5_en-no_base")
cls_index = tokenizer.convert_tokens_to_ids("[CLS]")
sep_index = tokenizer.convert_tokens_to_ids("[SEP]")
eos_index = tokenizer.convert_tokens_to_ids("[EOS]")
pad_index = tokenizer.convert_tokens_to_ids("[PAD]")
eng_index = tokenizer.convert_tokens_to_ids(">>eng<<")
nob_index = tokenizer.convert_tokens_to_ids(">>nob<<")
nno_index = tokenizer.convert_tokens_to_ids(">>nno<<")

model = AutoModelForSeq2SeqLM.from_pretrained("nort5_en-no_base", trust_remote_code=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"SYSTEM: Running on {device}", flush=True)

model = model.to(device)
model.eval()

print(f"Sucessfully loaded the model to the memory")


LANGUAGES = [
    "🇬🇧 English",
    "🇳🇴 Norwegian (Bokmål)",
    "🇳🇴 Norwegian (Nynorsk)"
]

LANGUAGE_IDS = {
    "🇬🇧 English": eng_index,
    "🇳🇴 Norwegian (Bokmål)": nob_index,
    "🇳🇴 Norwegian (Nynorsk)": nno_index
}


class BatchStreamer(TextIteratorStreamer):
    def put(self, value):
        print(value.shape)

        #if value.size(0) == 1:
        #    return super().put(value)

        if len(self.token_cache) == 0:
            self.token_cache = [[] for _ in range(value.size(0))]

        value = value.tolist()

        # Add the new token to the cache and decodes the entire thing.
        for c, v in zip(self.token_cache, value):
            c += [v] if isinstance(v, int) else v

        paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache]
        text = '\n'.join(paragraphs)

        self.on_finalized_text(text)

    def end(self):
        if len(self.token_cache) > 0:
            paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache]
            printable_text = '\n'.join(paragraphs)
            self.token_cache = []
            self.print_len = 0
        else:
            printable_text = ""

        self.next_tokens_are_prompt = True
        self.on_finalized_text(printable_text, stream_end=True)


class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
    def __init__(self, penalty: float, model):
        last_bias = model.classifier.nonlinearity[-1].bias.data
        last_bias = torch.nn.functional.log_softmax(last_bias)
        self.penalty = penalty * (last_bias - last_bias.max())

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        penalized_score = torch.gather(scores + self.penalty.unsqueeze(0).to(input_ids.device), 1, input_ids)
        scores.scatter_(1, input_ids, penalized_score)
        return scores


def translate(source, source_language, target_language):
    if source_language == target_language:
        yield source.strip()
        return source.strip()

    source = [s.strip() for s in source.split('\n')]
    source_subwords = tokenizer(source).input_ids
    source_subwords = [[cls_index, LANGUAGE_IDS[target_language], LANGUAGE_IDS[source_language]] + s + [sep_index] for s in source_subwords]
    source_subwords = [torch.tensor(s) for s in source_subwords]
    source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=pad_index)
    source_subwords = source_subwords[:, :512].to(device)

    streamer = BatchStreamer(tokenizer, timeout=60.0, skip_special_tokens=True)

    def generate(model, **kwargs):
        with torch.inference_mode():
            with torch.autocast(enabled=device != "cpu", device_type=device, dtype=torch.bfloat16):
                return model.generate(**kwargs)

    generate_kwargs = dict(
        streamer=streamer,
        input_ids=source_subwords,
        attention_mask=(source_subwords != pad_index).long(),
        max_new_tokens = 512-1,
        #top_k=64,
        #top_p=0.95,
        #do_sample=True,
        #temperature=0.3,
        num_beams=1,
        #use_cache=True,
        logits_processor=[RepetitionPenaltyLogitsProcessor(1.0, model)],
        # num_beams=4,
        # early_stopping=True,
        do_sample=False,
        use_cache=True
    )
    t = Thread(target=generate, args=(model,), kwargs=generate_kwargs)
    t.start()

    for new_text in streamer:
        yield new_text.strip()
    return new_text.strip()


def switch_inputs(source, target, source_language, target_language):
    return target, source, target_language, source_language


with gr.Blocks() as demo:
# with gr.Blocks(theme='sudeepshouche/minimalist') as demo:

    gr.Markdown("# Norwegian-English translation")

    with gr.Row():
        with gr.Column(scale=7, variant="panel"):
            source_language = gr.Dropdown(
                LANGUAGES, value=LANGUAGES[1], show_label=False
            )
            source = gr.Textbox(
                label="Source text", placeholder="What do you want to translate?", show_label=False, lines=7, max_lines=100, autofocus=True
            )  # .style(container=False)
            submit = gr.Button("Submit", variant="primary")  # .style(full_width=True)

        with gr.Column(scale=7, variant="panel"):
            target_language = gr.Dropdown(
                LANGUAGES, value=LANGUAGES[0], show_label=False
            )
            target = gr.Textbox(
                label="Translation", show_label=False, interactive=False, lines=7, max_lines=100
            )


    def update_state_after_user():
        return {
            source: gr.update(interactive=False),
            submit: gr.update(interactive=False),
            source_language: gr.update(interactive=False),
            target_language: gr.update(interactive=False)
        }

    def update_state_after_return():
        return {
            source: gr.update(interactive=True),
            submit: gr.update(interactive=True),
            source_language: gr.update(interactive=True),
            target_language: gr.update(interactive=True)
        }


    submit_event = source.submit(
        fn=update_state_after_user, inputs=None, outputs=[source, submit, source_language, target_language], queue=False
    ).then(
        fn=translate, inputs=[source, source_language, target_language], outputs=[target], queue=True
    ).then(
        fn=update_state_after_return, inputs=None, outputs=[source, submit, source_language, target_language], queue=False
    )
    
    submit_click_event = submit.click(
        fn=update_state_after_user, inputs=None, outputs=[source, submit, source_language, target_language], queue=False
    ).then(
        fn=translate, inputs=[source, source_language, target_language], outputs=[target], queue=True
    ).then(
        fn=update_state_after_return, inputs=None, outputs=[source, submit, source_language, target_language], queue=False
    )

demo.queue(max_size=32, concurrency_count=2)
demo.launch()