Spaces:
Sleeping
Sleeping
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers.pytorch_utils import softmax_backward_data | |
from torch.utils import checkpoint | |
from .configuration_nort5 import NorT5Config | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.activations import gelu_new | |
from transformers.modeling_outputs import ( | |
Seq2SeqModelOutput, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions | |
) | |
class Encoder(nn.Module): | |
def __init__(self, config, activation_checkpointing=False): | |
super().__init__() | |
self.main_input_name = "input_ids" | |
self.relative_embedding = RelativeEmbedding(config) | |
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
for i, layer in enumerate(self.layers): | |
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) | |
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) | |
self.activation_checkpointing = activation_checkpointing | |
def forward(self, hidden_states, attention_mask): | |
relative_embedding = self.relative_embedding() | |
hidden_states, attention_probs = [hidden_states], [] | |
for layer in self.layers: | |
if self.activation_checkpointing: | |
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding) | |
else: | |
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding) | |
hidden_states.append(hidden_state) | |
attention_probs.append(attention_p) | |
return hidden_states, attention_probs | |
class Decoder(nn.Module): | |
def __init__(self, config, activation_checkpointing=False): | |
super().__init__() | |
self.self_relative_embedding = RelativeEmbedding(config) | |
self.cross_relative_embedding = RelativeEmbedding(config) | |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
for i, layer in enumerate(self.layers): | |
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) | |
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) | |
self.activation_checkpointing = activation_checkpointing | |
def forward(self, x, encoder_output, encoder_padding_mask, past_key_values=None): | |
self_relative_embedding = self.self_relative_embedding() | |
cross_relative_embedding = self.cross_relative_embedding() | |
if past_key_values is None: | |
autoreg_mask = torch.triu( | |
torch.full((x.size(0), x.size(0)), True, device=x.device), | |
diagonal=1 | |
) | |
else: | |
autoreg_mask = None | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.layers) | |
hidden_states, self_attention_probs, cross_attention_probs, key_value_states = [x], [], [], [] | |
for layer, past_key_value in zip(self.layers, past_key_values): | |
if self.activation_checkpointing: | |
hidden_state, self_attention_p, cross_attention_p, key_value_state = checkpoint.checkpoint(layer, hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None) | |
else: | |
hidden_state, self_attention_p, cross_attention_p, key_value_state = layer(hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=past_key_value) | |
hidden_states.append(hidden_state) | |
self_attention_probs.append(self_attention_p) | |
cross_attention_probs.append(cross_attention_p) | |
key_value_states.append(key_value_state) | |
return hidden_states, self_attention_probs, cross_attention_probs, key_value_states | |
class MaskClassifier(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.nonlinearity = nn.Sequential( | |
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), | |
nn.Dropout(config.hidden_dropout_prob), | |
nn.Linear(config.hidden_size, config.vocab_size) | |
) | |
self.initialize(config.hidden_size) | |
def initialize(self, hidden_size): | |
std = math.sqrt(2.0 / (5.0 * hidden_size)) | |
nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
self.nonlinearity[-1].bias.data.zero_() | |
def forward(self, x): | |
x = self.nonlinearity(x) | |
return x | |
class EncoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = Attention(config, is_cross_attention=False) | |
self.mlp = FeedForward(config) | |
def forward(self, x, padding_mask, relative_embedding): | |
attention_output, attention_probs, _ = self.attention(x, x, padding_mask, relative_embedding) | |
x = x + attention_output | |
x = x + self.mlp(x) | |
return x, attention_probs | |
class DecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self_attention = Attention(config, is_cross_attention=False) | |
self.cross_attention = Attention(config, is_cross_attention=True) | |
self.mlp = FeedForward(config) | |
def forward(self, x, autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None): | |
query_offset = 0 | |
if past_key_value is not None: | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
query_offset = self_attn_past_key_value[0].size(2) | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
x_, self_attention_probs, self_key_value_state = self.self_attention(x, x, autoreg_mask, self_relative_embedding, past_key_value=self_attn_past_key_value, query_offset=query_offset) | |
x = x + x_ | |
x_, cross_attention_probs, cross_key_value_state = self.cross_attention(x, encoder_output, encoder_padding_mask, cross_relative_embedding, past_key_value=cross_attn_past_key_value, query_offset=query_offset) | |
x = x + x_ | |
x = x + self.mlp(x) | |
return x, self_attention_probs, cross_attention_probs, self_key_value_state + cross_key_value_state | |
class GeGLU(nn.Module): | |
def forward(self, x): | |
x, gate = x.chunk(2, dim=-1) | |
x = x * gelu_new(gate) | |
return x | |
class FeedForward(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), | |
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), | |
GeGLU(), | |
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), | |
nn.Linear(config.intermediate_size, config.hidden_size, bias=False), | |
nn.Dropout(config.hidden_dropout_prob) | |
) | |
self.initialize(config.hidden_size) | |
def initialize(self, hidden_size): | |
std = math.sqrt(2.0 / (5.0 * hidden_size)) | |
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
def forward(self, x): | |
return self.mlp(x) | |
class MaskedSoftmax(torch.autograd.Function): | |
def forward(self, x, mask, dim): | |
self.dim = dim | |
if mask is not None: | |
x.masked_fill_(mask, float('-inf')) | |
x = torch.softmax(x, self.dim) | |
if mask is not None: | |
x.masked_fill_(mask, 0.0) | |
self.save_for_backward(x) | |
return x | |
def backward(self, grad_output): | |
output, = self.saved_tensors | |
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output) | |
return input_grad, None, None | |
class Attention(nn.Module): | |
def __init__(self, config, is_cross_attention=False): | |
super().__init__() | |
self.config = config | |
self.is_cross_attention = is_cross_attention | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_size = config.hidden_size // config.num_attention_heads | |
self.in_proj_q = nn.Linear(config.hidden_size, config.hidden_size, bias=True) | |
self.in_proj_k = nn.Linear(config.hidden_size, config.hidden_size, bias=True) | |
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True) | |
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) | |
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) | |
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) | |
position_indices = torch.arange(512, dtype=torch.long).unsqueeze(1) \ | |
- torch.arange(512, dtype=torch.long).unsqueeze(0) | |
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, 512) | |
position_indices = config.position_bucket_size - 1 + position_indices | |
self.register_buffer("position_indices", position_indices, persistent=True) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.scale = 1.0 / math.sqrt(3 * self.head_size) | |
self.initialize() | |
def make_log_bucket_position(self, relative_pos, bucket_size, max_position): | |
sign = torch.sign(relative_pos) | |
mid = bucket_size // 2 | |
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) | |
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid | |
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() | |
return bucket_pos | |
def initialize(self): | |
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) | |
nn.init.trunc_normal_(self.in_proj_q.weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
nn.init.trunc_normal_(self.in_proj_k.weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
self.in_proj_q.bias.data.zero_() | |
self.in_proj_k.bias.data.zero_() | |
self.in_proj_v.bias.data.zero_() | |
self.out_proj.bias.data.zero_() | |
def forward(self, q, kv, attention_mask, relative_embedding, past_key_value=None, query_offset=0): | |
key_len, batch_size, _ = kv.size() | |
query_len, _, _ = q.size() | |
if not self.is_cross_attention or past_key_value is None or past_key_value[0].size(1) != kv.size(0): | |
kv = self.pre_layer_norm(kv) | |
key = self.in_proj_k(kv) # shape: [T, B, D] | |
value = self.in_proj_v(kv) # shape: [T, B, D] | |
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) # shape: [BxH, T, D] | |
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) # shape: [BxH, T, D] | |
if past_key_value is not None: | |
if not self.is_cross_attention: | |
key = torch.cat([past_key_value[0].flatten(0, 1), key], dim=1) | |
value = torch.cat([past_key_value[1].flatten(0, 1), value], dim=1) | |
key_len = key.size(1) | |
elif past_key_value[0].size(1) == kv.size(0): | |
key = past_key_value[0].flatten(0, 1) | |
value = past_key_value[1].flatten(0, 1) | |
if self.position_indices.size(0) < max(query_len, key_len): | |
position_indices = torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(1) \ | |
- torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(0) | |
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512) | |
position_indices = self.config.position_bucket_size - 1 + position_indices | |
self.register_buffer("position_indices", position_indices.to(q.device), persistent=True) | |
q = self.pre_layer_norm(q) | |
query = self.in_proj_q(q) # shape: [T, B, D] | |
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) | |
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) | |
query_pos = self.in_proj_q(self.dropout(relative_embedding)) # shape: [2T-1, D] | |
query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D] | |
key_pos = self.in_proj_k(self.dropout(relative_embedding)) # shape: [2T-1, D] | |
key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D] | |
query_ = query.view(batch_size, self.num_heads, query_len, self.head_size) | |
key_ = key.view(batch_size, self.num_heads, key_len, self.head_size) | |
attention_c_p = torch.einsum("bhqd,khd->bhqk", query_, key_pos.squeeze(1) * self.scale) | |
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key_ * self.scale, query_pos.squeeze(1)) | |
position_indices = self.position_indices[query_offset:query_offset+query_len, :key_len].expand(batch_size, self.num_heads, -1, -1) | |
attention_c_p = attention_c_p.gather(3, position_indices) | |
attention_p_c = attention_p_c.gather(2, position_indices) | |
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len) | |
attention_scores.add_(attention_c_p) | |
attention_scores.add_(attention_p_c) | |
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1) | |
attention_probs = self.dropout(attention_probs) | |
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D] | |
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D] | |
context = self.out_proj(context) | |
context = self.post_layer_norm(context) | |
context = self.dropout(context) | |
key = key.detach().unflatten(0, (-1, self.num_heads)) | |
value = value.detach().unflatten(0, (-1, self.num_heads)) | |
return context, attention_probs.detach(), (key, value) | |
class WordEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.initialize() | |
def initialize(self): | |
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) | |
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) | |
def forward(self, input_ids): | |
return self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) | |
class RelativeEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) | |
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.initialize(config.hidden_size) | |
def initialize(self, hidden_size): | |
std = math.sqrt(2.0 / (5.0 * hidden_size)) | |
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) | |
def forward(self): | |
return self.relative_layer_norm(self.relative_embedding) | |
# | |
# HuggingFace wrappers | |
# | |
class NorT5PreTrainedModel(PreTrainedModel): | |
config_class = NorT5Config | |
base_model_prefix = "norT5" | |
supports_gradient_checkpointing = True | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, Encoder): | |
module.activation_checkpointing = value | |
def _init_weights(self, module): | |
pass # everything is already initialized | |
class NorT5Model(NorT5PreTrainedModel): | |
def __init__(self, config, add_lm_layer=False, add_decoder=True): | |
super().__init__(config) | |
self.config = config | |
self.cls_token_id = config.cls_token_id | |
self.sep_token_id = config.sep_token_id | |
self.bos_token_id = config.bos_token_id | |
self.eos_token_id = config.eos_token_id | |
self.pad_token_id = config.pad_token_id | |
self.embedding = WordEmbedding(config) | |
self.encoder = Encoder(config, activation_checkpointing=False) | |
self.decoder = Decoder(config, activation_checkpointing=False) if add_decoder else None | |
self.classifier = MaskClassifier(config) if add_lm_layer else None | |
def get_input_embeddings(self): | |
return self.embedding.word_embedding | |
def set_input_embeddings(self, value): | |
self.embedding.word_embedding = value | |
def get_encoder(self): | |
class EncoderWrapper: | |
def __call__(cls, *args, **kwargs): | |
return cls.forward(*args, **kwargs) | |
def forward( | |
cls, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.get_encoder_output( | |
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict | |
) | |
return EncoderWrapper() | |
def get_decoder(self): | |
return self.get_decoder_output | |
def set_decoder_special_tokens(self, target_id): | |
target_id.masked_fill_(target_id == self.cls_token_id, self.bos_token_id) | |
target_id.masked_fill_(target_id == self.sep_token_id, self.eos_token_id) | |
return target_id | |
def _shift_right(self, input_ids): | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = self.bos_token_id | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id) | |
return shifted_input_ids | |
def get_encoder_output( | |
self, | |
input_ids: torch.Tensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict = False | |
): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
raise ValueError("You have to specify input_ids") | |
batch_size, seq_length = input_shape | |
device = input_ids.device | |
if attention_mask is None: | |
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) | |
else: | |
attention_mask = ~attention_mask.bool() | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
static_embeddings = self.embedding(input_ids.t()) | |
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, attention_mask) | |
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings] | |
last_layer = contextualized_embeddings[-1] | |
contextualized_embeddings = [contextualized_embeddings[0]] + [ | |
contextualized_embeddings[i] - contextualized_embeddings[i - 1] | |
for i in range(1, len(contextualized_embeddings)) | |
] | |
if not return_dict: | |
return ( | |
last_layer, | |
*([contextualized_embeddings] if output_hidden_states else []), | |
*([attention_probs] if output_attentions else []) | |
) | |
return BaseModelOutput( | |
last_hidden_state=last_layer, | |
hidden_states=contextualized_embeddings if output_hidden_states else None, | |
attentions=attention_probs if output_attentions else None | |
) | |
def get_decoder_output( | |
self, | |
target_ids: torch.Tensor = None, | |
encoder_output: torch.Tensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict = False | |
): | |
batch_size, seq_length, _ = encoder_output.shape | |
device = target_ids.device | |
if attention_mask is None: | |
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) | |
else: | |
attention_mask = ~attention_mask.bool() | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
hidden_states, self_attention_p, cross_attention_p, key_value_states = self.decoder( | |
self.embedding(target_ids.t()), | |
encoder_output.transpose(0, 1), | |
attention_mask, | |
past_key_values | |
) | |
hidden_states = [e.transpose(0, 1) for e in hidden_states] | |
last_layer = hidden_states[-1] | |
hidden_states = [hidden_states[0]] + [ | |
hidden_states[i] - hidden_states[i - 1] | |
for i in range(1, len(hidden_states)) | |
] | |
if not return_dict: | |
return ( | |
last_layer, | |
*([key_value_states] if use_cache else []), | |
*([hidden_states] if output_hidden_states else []), | |
*([self_attention_p] if output_attentions else []), | |
*([cross_attention_p] if output_attentions else []), | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=last_layer, | |
past_key_values=key_value_states if use_cache else None, | |
hidden_states=hidden_states if output_hidden_states else None, | |
attentions=self_attention_p if output_attentions else None, | |
cross_attentions=cross_attention_p if output_attentions else None | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids) | |
if encoder_outputs is None: | |
encoder_outputs = self.get_encoder_output( | |
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
decoder_outputs = self.get_decoder_output( | |
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class NorT5ForConditionalGeneration(NorT5Model): | |
def __init__(self, config): | |
super().__init__(config, add_lm_layer=True) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", False) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.get_encoder_output( | |
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
if labels is not None: | |
labels = self.set_decoder_special_tokens(labels) | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = self._shift_right(labels) | |
elif decoder_input_ids is not None: | |
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids) | |
decoder_outputs = self.get_decoder_output( | |
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict | |
) | |
lm_logits = self.classifier(decoder_outputs[0]) | |
loss = None | |
if labels is not None: | |
labels.masked_fill_(labels == self.pad_token_id, -100) | |
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) | |
loss = loss_fct(lm_logits.flatten(0, 1), labels.flatten()) | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1:] | |
return { | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
print("You might want to consider setting `use_cache=True` to speed up decoding") | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
layer_past_state = layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)) | |
reordered_layer_past_states = reordered_layer_past_states + (layer_past_state,) | |
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape | |
assert len(reordered_layer_past_states) == len(layer_past_states) | |
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
return reordered_decoder_past | |
class NorT5Encoder(NorT5Model): | |
def __init__(self, config): | |
super().__init__(config, add_lm_layer=False, add_decoder=True) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.get_encoder_output( | |
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict | |
) | |