Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/ltg/no-en-translation
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, TextIteratorStreamer
|
3 |
-
# from modeling_nort5 import NorT5ForConditionalGeneration
|
4 |
from threading import Thread
|
|
|
5 |
|
6 |
|
7 |
print(f"Starting to load the model to memory")
|
@@ -10,9 +10,10 @@ tokenizer = AutoTokenizer.from_pretrained("nort5_en-no_base")
|
|
10 |
cls_index = tokenizer.convert_tokens_to_ids("[CLS]")
|
11 |
sep_index = tokenizer.convert_tokens_to_ids("[SEP]")
|
12 |
eos_index = tokenizer.convert_tokens_to_ids("[EOS]")
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
model = AutoModelForSeq2SeqLM.from_pretrained("nort5_en-no_base", trust_remote_code=True)
|
18 |
|
@@ -25,14 +26,6 @@ model.eval()
|
|
25 |
print(f"Sucessfully loaded the model to the memory")
|
26 |
|
27 |
|
28 |
-
INITIAL_PROMPT = "Du er NorT5, en språkmodell laget ved Universitetet i Oslo. Du er en hjelpsom og ufarlig assistent som er glade for å hjelpe brukeren med enhver forespørsel."
|
29 |
-
TEMPERATURE = 0.7
|
30 |
-
SAMPLE = True
|
31 |
-
BEAMS = 1
|
32 |
-
PENALTY = 1.2
|
33 |
-
TOP_K = 64
|
34 |
-
TOP_P = 0.95
|
35 |
-
|
36 |
LANGUAGES = [
|
37 |
"🇬🇧 English",
|
38 |
"🇳🇴 Norwegian (Bokmål)",
|
@@ -42,10 +35,44 @@ LANGUAGES = [
|
|
42 |
LANGUAGE_IDS = {
|
43 |
"🇬🇧 English": eng_index,
|
44 |
"🇳🇴 Norwegian (Bokmål)": nob_index,
|
45 |
-
"🇳🇴 Norwegian (Nynorsk)"
|
46 |
}
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def set_default_target():
|
50 |
return "*Translating...*"
|
51 |
|
@@ -54,33 +81,45 @@ def translate(source, source_language, target_language):
|
|
54 |
if source_language == target_language:
|
55 |
return source
|
56 |
|
|
|
57 |
source_subwords = tokenizer(source).input_ids
|
58 |
-
source_subwords = [cls_index, LANGUAGE_IDS[target_language], LANGUAGE_IDS[source_language]] +
|
59 |
-
source_subwords = torch.tensor(
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
input_ids=source_subwords,
|
|
|
63 |
max_new_tokens = 512-1,
|
64 |
-
|
|
|
|
|
|
|
65 |
)
|
66 |
-
|
|
|
67 |
|
68 |
-
|
|
|
|
|
69 |
|
70 |
|
71 |
def switch_inputs(source, target, source_language, target_language):
|
72 |
return target, source, target_language, source_language
|
73 |
|
74 |
|
75 |
-
import gradio as gr
|
76 |
-
|
77 |
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
|
78 |
|
79 |
gr.Markdown("# Norwegian-English translation")
|
80 |
-
# gr.HTML('<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=6.75%>')
|
81 |
-
# gr.Checkbox(label="I want to publish all my conversations", value=True)
|
82 |
-
|
83 |
-
# chatbot = gr.Chatbot(value=[[None, "Hei, hva kan jeg gjøre for deg? 😊"]])
|
84 |
|
85 |
with gr.Row():
|
86 |
with gr.Column(scale=7, variant="panel"):
|
@@ -116,8 +155,8 @@ with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
|
|
116 |
return {
|
117 |
source: gr.update(interactive=True),
|
118 |
submit: gr.update(interactive=True),
|
119 |
-
source_language: gr.update(interactive=
|
120 |
-
target_language: gr.update(interactive=
|
121 |
}
|
122 |
|
123 |
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer
|
|
|
3 |
from threading import Thread
|
4 |
+
import gradio as gr
|
5 |
|
6 |
|
7 |
print(f"Starting to load the model to memory")
|
|
|
10 |
cls_index = tokenizer.convert_tokens_to_ids("[CLS]")
|
11 |
sep_index = tokenizer.convert_tokens_to_ids("[SEP]")
|
12 |
eos_index = tokenizer.convert_tokens_to_ids("[EOS]")
|
13 |
+
pad_index = tokenizer.convert_tokens_to_ids("[PAD]")
|
14 |
+
eng_index = tokenizer.convert_tokens_to_ids(">>eng<<")
|
15 |
+
nob_index = tokenizer.convert_tokens_to_ids(">>nob<<")
|
16 |
+
nno_index = tokenizer.convert_tokens_to_ids(">>nno<<")
|
17 |
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained("nort5_en-no_base", trust_remote_code=True)
|
19 |
|
|
|
26 |
print(f"Sucessfully loaded the model to the memory")
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
LANGUAGES = [
|
30 |
"🇬🇧 English",
|
31 |
"🇳🇴 Norwegian (Bokmål)",
|
|
|
35 |
LANGUAGE_IDS = {
|
36 |
"🇬🇧 English": eng_index,
|
37 |
"🇳🇴 Norwegian (Bokmål)": nob_index,
|
38 |
+
"🇳🇴 Norwegian (Nynorsk)": nno_index
|
39 |
}
|
40 |
|
41 |
|
42 |
+
class BatchStreamer(TextIteratorStreamer):
|
43 |
+
def put(self, value):
|
44 |
+
print(value.shape)
|
45 |
+
|
46 |
+
#if value.size(0) == 1:
|
47 |
+
# return super().put(value)
|
48 |
+
|
49 |
+
if len(self.token_cache) == 0:
|
50 |
+
self.token_cache = [[] for _ in range(value.size(0))]
|
51 |
+
|
52 |
+
value = value.tolist()
|
53 |
+
|
54 |
+
# Add the new token to the cache and decodes the entire thing.
|
55 |
+
for c, v in zip(self.token_cache, value):
|
56 |
+
c += [v] if isinstance(v, int) else v
|
57 |
+
|
58 |
+
paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache]
|
59 |
+
text = '\n'.join(paragraphs)
|
60 |
+
|
61 |
+
self.on_finalized_text(text)
|
62 |
+
|
63 |
+
def end(self):
|
64 |
+
if len(self.token_cache) > 0:
|
65 |
+
paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache]
|
66 |
+
printable_text = '\n'.join(paragraphs)
|
67 |
+
self.token_cache = []
|
68 |
+
self.print_len = 0
|
69 |
+
else:
|
70 |
+
printable_text = ""
|
71 |
+
|
72 |
+
self.next_tokens_are_prompt = True
|
73 |
+
self.on_finalized_text(printable_text, stream_end=True)
|
74 |
+
|
75 |
+
|
76 |
def set_default_target():
|
77 |
return "*Translating...*"
|
78 |
|
|
|
81 |
if source_language == target_language:
|
82 |
return source
|
83 |
|
84 |
+
source = [s.strip() for s in source.split('\n')]
|
85 |
source_subwords = tokenizer(source).input_ids
|
86 |
+
source_subwords = [[cls_index, LANGUAGE_IDS[target_language], LANGUAGE_IDS[source_language]] + s + [sep_index] for s in source_subwords]
|
87 |
+
source_subwords = [torch.tensor(s) for s in source_subwords]
|
88 |
+
source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=pad_index)
|
89 |
+
source_subwords = source_subwords[:, :512].to(device)
|
90 |
+
|
91 |
+
streamer = BatchStreamer(tokenizer, timeout=60.0, skip_special_tokens=True)
|
92 |
|
93 |
+
def generate(model, **kwargs):
|
94 |
+
with torch.inference_mode():
|
95 |
+
with torch.autocast(enabled=device != "cpu", device_type=device, dtype=torch.bfloat16):
|
96 |
+
return model.generate(**kwargs)
|
97 |
+
|
98 |
+
generate_kwargs = dict(
|
99 |
+
streamer=streamer,
|
100 |
input_ids=source_subwords,
|
101 |
+
attention_mask=(source_subwords != pad_index).long(),
|
102 |
max_new_tokens = 512-1,
|
103 |
+
# num_beams=4,
|
104 |
+
# early_stopping=True,
|
105 |
+
do_sample=False,
|
106 |
+
use_cache=True
|
107 |
)
|
108 |
+
t = Thread(target=generate, args=(model,), kwargs=generate_kwargs)
|
109 |
+
t.start()
|
110 |
|
111 |
+
for new_text in streamer:
|
112 |
+
yield new_text.strip()
|
113 |
+
return new_text.strip()
|
114 |
|
115 |
|
116 |
def switch_inputs(source, target, source_language, target_language):
|
117 |
return target, source, target_language, source_language
|
118 |
|
119 |
|
|
|
|
|
120 |
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
|
121 |
|
122 |
gr.Markdown("# Norwegian-English translation")
|
|
|
|
|
|
|
|
|
123 |
|
124 |
with gr.Row():
|
125 |
with gr.Column(scale=7, variant="panel"):
|
|
|
155 |
return {
|
156 |
source: gr.update(interactive=True),
|
157 |
submit: gr.update(interactive=True),
|
158 |
+
source_language: gr.update(interactive=True),
|
159 |
+
target_language: gr.update(interactive=True)
|
160 |
}
|
161 |
|
162 |
|