Spaces:
Runtime error
Runtime error
File size: 1,938 Bytes
7daaa6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
#!/usr/bin/env python3
# coding=utf-8
import torch
from data.field.mini_torchtext.field import RawField
from data.field.mini_torchtext.vocab import Vocab
from collections import Counter
import types
class EdgeField(RawField):
def __init__(self):
super(EdgeField, self).__init__()
self.vocab = None
def process(self, edges, device=None):
edges = self.numericalize(edges)
tensor = self.pad(edges, device)
return tensor
def pad(self, edges, device):
tensor = torch.zeros(edges[0], edges[1], dtype=torch.long, device=device)
for edge in edges[-1]:
tensor[edge[0], edge[1]] = edge[2]
return tensor
def numericalize(self, arr):
def multi_map(array, function):
if isinstance(array, tuple):
return (array[0], array[1], function(array[2]))
elif isinstance(array, list):
return [multi_map(array[i], function) for i in range(len(array))]
else:
return array
if self.vocab is not None:
arr = multi_map(arr, lambda x: self.vocab.stoi[x] if x is not None else 0)
return arr
def build_vocab(self, *args):
def generate(l):
if isinstance(l, tuple):
yield l[2]
elif isinstance(l, list) or isinstance(l, types.GeneratorType):
for i in l:
yield from generate(i)
else:
return
counter = Counter()
sources = []
for arg in args:
if isinstance(arg, torch.utils.data.Dataset):
sources += [arg.get_examples(name) for name, field in arg.fields.items() if field is self]
else:
sources.append(arg)
for x in generate(sources):
if x is not None:
counter.update([x])
self.vocab = Vocab(counter, specials=[])
|