luciancotolan commited on
Commit
1e27e4a
·
1 Parent(s): be2f2eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -19
app.py CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
3
  import pickle
4
 
5
  treemodel = pickle.load(open('decision_tree.pkl', 'rb'))
6
- nnmodel = pickle.load(open('neural_network.pkl', 'rb'))
7
 
8
  def onehot(df, column):
9
  df = df.copy()
@@ -45,15 +45,15 @@ def tree(file_obj):
45
  pred_df = pd.concat([df_original, pred_df], axis=1)
46
  return pred_df
47
 
48
- def nn(file_obj):
49
- nn_df = pd.read_csv(file_obj.name)
50
- nn_df = dataframe(nn_df)
51
- y_prednn = nnmodel.predict(nn_df)
52
- pred_dfnn = pd.DataFrame(y_prednn, columns = ['predictedFraud'])
53
- #append the predictions to the original dataframe
54
- df_originalnn = pd.read_csv(file_obj.name)
55
- pred_dfnn = pd.concat([df_originalnn, pred_dfnn], axis=1)
56
- return pred_dfnn
57
 
58
  file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
59
  tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
@@ -66,12 +66,12 @@ tree_interface = gr.Interface(
66
  description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
67
  )
68
 
69
- nn_interface = gr.Interface(
70
- fn=nn,
71
- inputs=file,
72
- outputs=nn_output,
73
- title="Fraud Detection - NEURAL NETWORK EXPERT SYSTEM",
74
- description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
75
- )
76
-
77
- gr.Parallel(tree_interface, nn_interface).launch()
 
3
  import pickle
4
 
5
  treemodel = pickle.load(open('decision_tree.pkl', 'rb'))
6
+ #nnmodel = pickle.load(open('neural_network.pkl', 'rb'))
7
 
8
  def onehot(df, column):
9
  df = df.copy()
 
45
  pred_df = pd.concat([df_original, pred_df], axis=1)
46
  return pred_df
47
 
48
+ #def nn(file_obj):
49
+ # nn_df = pd.read_csv(file_obj.name)
50
+ # nn_df = dataframe(nn_df)
51
+ # y_prednn = nnmodel.predict(nn_df)
52
+ # pred_dfnn = pd.DataFrame(y_prednn, columns = ['predictedFraud'])
53
+ # #append the predictions to the original dataframe
54
+ # df_originalnn = pd.read_csv(file_obj.name)
55
+ # pred_dfnn = pd.concat([df_originalnn, pred_dfnn], axis=1)
56
+ # return pred_dfnn
57
 
58
  file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
59
  tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
 
66
  description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
67
  )
68
 
69
+ #nn_interface = gr.Interface(
70
+ # fn=nn,
71
+ # inputs=file,
72
+ # outputs=nn_output,
73
+ # title="Fraud Detection - NEURAL NETWORK EXPERT SYSTEM",
74
+ # description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
75
+ # )
76
+ tree_interface.launch(inline=True)
77
+ #gr.Parallel(tree_interface, nn_interface).launch()