Spaces:
Sleeping
Sleeping
File size: 21,701 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import tempfile
import warnings
from pathlib import Path
from typing import Union
import numpy as np
from torch import nn
from TTS.cs_api import CS_API
from TTS.utils.audio.numpy_transforms import save_wav
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
class TTS(nn.Module):
"""TODO: Add voice conversion and Capacitron support."""
def __init__(
self,
model_name: str = "",
model_path: str = None,
config_path: str = None,
vocoder_path: str = None,
vocoder_config_path: str = None,
progress_bar: bool = True,
cs_api_model: str = "XTTS",
gpu=False,
):
"""🐸TTS python interface that allows to load and use the released models.
Example with a multi-speaker model:
>>> from TTS.api import TTS
>>> tts = TTS(TTS.list_models()[0])
>>> wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
>>> tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
Example with a single-speaker model:
>>> tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False)
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
Example loading a model from a path:
>>> tts = TTS(model_path="/path/to/checkpoint_100000.pth", config_path="/path/to/config.json", progress_bar=False, gpu=False)
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
Example voice cloning with YourTTS in English, French and Portuguese:
>>> tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
>>> tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="thisisit.wav")
>>> tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="thisisit.wav")
>>> tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="thisisit.wav")
Example Fairseq TTS models (uses ISO language codes in https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html):
>>> tts = TTS(model_name="tts_models/eng/fairseq/vits", progress_bar=False, gpu=True)
>>> tts.tts_to_file("This is a test.", file_path="output.wav")
Args:
model_name (str, optional): Model name to load. You can list models by ```tts.models```. Defaults to None.
model_path (str, optional): Path to the model checkpoint. Defaults to None.
config_path (str, optional): Path to the model config. Defaults to None.
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
vocoder_config_path (str, optional): Path to the vocoder config. Defaults to None.
progress_bar (bool, optional): Whether to pring a progress bar while downloading a model. Defaults to True.
cs_api_model (str, optional): Name of the model to use for the Coqui Studio API. Available models are
"XTTS", "V1". You can also use `TTS.cs_api.CS_API" for more control.
Defaults to "XTTS".
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
super().__init__()
self.manager = ModelManager(models_file=self.get_models_file_path(), progress_bar=progress_bar, verbose=False)
self.synthesizer = None
self.voice_converter = None
self.csapi = None
self.cs_api_model = cs_api_model
self.model_name = ""
if gpu:
warnings.warn("`gpu` will be deprecated. Please use `tts.to(device)` instead.")
if model_name is not None:
if "tts_models" in model_name or "coqui_studio" in model_name:
self.load_tts_model_by_name(model_name, gpu)
elif "voice_conversion_models" in model_name:
self.load_vc_model_by_name(model_name, gpu)
if model_path:
self.load_tts_model_by_path(
model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu
)
@property
def models(self):
return self.manager.list_tts_models()
@property
def is_multi_speaker(self):
if hasattr(self.synthesizer.tts_model, "speaker_manager") and self.synthesizer.tts_model.speaker_manager:
return self.synthesizer.tts_model.speaker_manager.num_speakers > 1
return False
@property
def is_coqui_studio(self):
if self.model_name is None:
return False
return "coqui_studio" in self.model_name
@property
def is_multi_lingual(self):
# Not sure what sets this to None, but applied a fix to prevent crashing.
if isinstance(self.model_name, str) and "xtts" in self.model_name:
return True
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
return self.synthesizer.tts_model.language_manager.num_languages > 1
return False
@property
def speakers(self):
if not self.is_multi_speaker:
return None
return self.synthesizer.tts_model.speaker_manager.speaker_names
@property
def languages(self):
if not self.is_multi_lingual:
return None
return self.synthesizer.tts_model.language_manager.language_names
@staticmethod
def get_models_file_path():
return Path(__file__).parent / ".models.json"
def list_models(self):
try:
csapi = CS_API(model=self.cs_api_model)
models = csapi.list_speakers_as_tts_models()
except ValueError as e:
print(e)
models = []
manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False)
return manager.list_tts_models() + models
def download_model_by_name(self, model_name: str):
model_path, config_path, model_item = self.manager.download_model(model_name)
if "fairseq" in model_name or (model_item is not None and isinstance(model_item["model_url"], list)):
# return model directory if there are multiple files
# we assume that the model knows how to load itself
return None, None, None, None, model_path
if model_item.get("default_vocoder") is None:
return model_path, config_path, None, None, None
vocoder_path, vocoder_config_path, _ = self.manager.download_model(model_item["default_vocoder"])
return model_path, config_path, vocoder_path, vocoder_config_path, None
def load_vc_model_by_name(self, model_name: str, gpu: bool = False):
"""Load one of the voice conversion models by name.
Args:
model_name (str): Model name to load. You can list models by ```tts.models```.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
self.model_name = model_name
model_path, config_path, _, _, _ = self.download_model_by_name(model_name)
self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu)
def load_tts_model_by_name(self, model_name: str, gpu: bool = False):
"""Load one of 🐸TTS models by name.
Args:
model_name (str): Model name to load. You can list models by ```tts.models```.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
TODO: Add tests
"""
self.synthesizer = None
self.csapi = None
self.model_name = model_name
if "coqui_studio" in model_name:
self.csapi = CS_API()
else:
model_path, config_path, vocoder_path, vocoder_config_path, model_dir = self.download_model_by_name(
model_name
)
# init synthesizer
# None values are fetch from the model
self.synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=None,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config_path,
encoder_checkpoint=None,
encoder_config=None,
model_dir=model_dir,
use_cuda=gpu,
)
def load_tts_model_by_path(
self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False
):
"""Load a model from a path.
Args:
model_path (str): Path to the model checkpoint.
config_path (str): Path to the model config.
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
vocoder_config (str, optional): Path to the vocoder config. Defaults to None.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
self.synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=None,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config,
encoder_checkpoint=None,
encoder_config=None,
use_cuda=gpu,
)
def _check_arguments(
self,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = None,
**kwargs,
) -> None:
"""Check if the arguments are valid for the model."""
if not self.is_coqui_studio:
# check for the coqui tts models
if self.is_multi_speaker and (speaker is None and speaker_wav is None):
raise ValueError("Model is multi-speaker but no `speaker` is provided.")
if self.is_multi_lingual and language is None:
raise ValueError("Model is multi-lingual but no `language` is provided.")
if not self.is_multi_speaker and speaker is not None and "voice_dir" not in kwargs:
raise ValueError("Model is not multi-speaker but `speaker` is provided.")
if not self.is_multi_lingual and language is not None:
raise ValueError("Model is not multi-lingual but `language` is provided.")
if not emotion is None and not speed is None:
raise ValueError("Emotion and speed can only be used with Coqui Studio models.")
else:
if emotion is None:
emotion = "Neutral"
if speed is None:
speed = 1.0
# check for the studio models
if speaker_wav is not None:
raise ValueError("Coqui Studio models do not support `speaker_wav` argument.")
if speaker is not None:
raise ValueError("Coqui Studio models do not support `speaker` argument.")
if language is not None and language != "en":
raise ValueError("Coqui Studio models currently support only `language=en` argument.")
if emotion not in ["Neutral", "Happy", "Sad", "Angry", "Dull"]:
raise ValueError(f"Emotion - `{emotion}` - must be one of `Neutral`, `Happy`, `Sad`, `Angry`, `Dull`.")
def tts_coqui_studio(
self,
text: str,
speaker_name: str = None,
language: str = None,
emotion: str = None,
speed: float = 1.0,
pipe_out=None,
file_path: str = None,
) -> Union[np.ndarray, str]:
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API.
Args:
text (str):
Input text to synthesize.
speaker_name (str, optional):
Speaker name from Coqui Studio. Defaults to None.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model.
emotion (str, optional):
Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only available
with "V1" model. Defaults to None.
speed (float, optional):
Speed of the speech. Defaults to 1.0.
pipe_out (BytesIO, optional):
Flag to stdout the generated TTS wav file for shell pipe.
file_path (str, optional):
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None.
Returns:
Union[np.ndarray, str]: Waveform of the synthesized speech or path to the output file.
"""
speaker_name = self.model_name.split("/")[2]
if file_path is not None:
return self.csapi.tts_to_file(
text=text,
speaker_name=speaker_name,
language=language,
speed=speed,
pipe_out=pipe_out,
emotion=emotion,
file_path=file_path,
)[0]
return self.csapi.tts(text=text, speaker_name=speaker_name, language=language, speed=speed, emotion=emotion)[0]
def tts(
self,
text: str,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = None,
**kwargs,
):
"""Convert text to speech.
Args:
text (str):
Input text to synthesize.
speaker (str, optional):
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
emotion (str, optional):
Emotion to use for 🐸Coqui Studio models. If None, Studio models use "Neutral". Defaults to None.
speed (float, optional):
Speed factor to use for 🐸Coqui Studio models, between 0 and 2.0. If None, Studio models use 1.0.
Defaults to None.
"""
self._check_arguments(
speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed, **kwargs
)
if self.csapi is not None:
return self.tts_coqui_studio(
text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed
)
wav = self.synthesizer.tts(
text=text,
speaker_name=speaker,
language_name=language,
speaker_wav=speaker_wav,
reference_wav=None,
style_wav=None,
style_text=None,
reference_speaker_name=None,
**kwargs,
)
return wav
def tts_to_file(
self,
text: str,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = 1.0,
pipe_out=None,
file_path: str = "output.wav",
**kwargs,
):
"""Convert text to speech.
Args:
text (str):
Input text to synthesize.
speaker (str, optional):
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
emotion (str, optional):
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
speed (float, optional):
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
pipe_out (BytesIO, optional):
Flag to stdout the generated TTS wav file for shell pipe.
file_path (str, optional):
Output file path. Defaults to "output.wav".
kwargs (dict, optional):
Additional arguments for the model.
"""
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
if self.csapi is not None:
return self.tts_coqui_studio(
text=text,
speaker_name=speaker,
language=language,
emotion=emotion,
speed=speed,
file_path=file_path,
pipe_out=pipe_out,
)
wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
self.synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out)
return file_path
def voice_conversion(
self,
source_wav: str,
target_wav: str,
):
"""Voice conversion with FreeVC. Convert source wav to target speaker.
Args:``
source_wav (str):
Path to the source wav file.
target_wav (str):`
Path to the target wav file.
"""
wav = self.voice_converter.voice_conversion(source_wav=source_wav, target_wav=target_wav)
return wav
def voice_conversion_to_file(
self,
source_wav: str,
target_wav: str,
file_path: str = "output.wav",
):
"""Voice conversion with FreeVC. Convert source wav to target speaker.
Args:
source_wav (str):
Path to the source wav file.
target_wav (str):
Path to the target wav file.
file_path (str, optional):
Output file path. Defaults to "output.wav".
"""
wav = self.voice_conversion(source_wav=source_wav, target_wav=target_wav)
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)
return file_path
def tts_with_vc(self, text: str, language: str = None, speaker_wav: str = None):
"""Convert text to speech with voice conversion.
It combines tts with voice conversion to fake voice cloning.
- Convert text to speech with tts.
- Convert the output wav to target speaker with voice conversion.
Args:
text (str):
Input text to synthesize.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
"""
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# Lazy code... save it to a temp file to resample it while reading it for VC
self.tts_to_file(text=text, speaker=None, language=language, file_path=fp.name, speaker_wav=speaker_wav)
if self.voice_converter is None:
self.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24")
wav = self.voice_converter.voice_conversion(source_wav=fp.name, target_wav=speaker_wav)
return wav
def tts_with_vc_to_file(
self, text: str, language: str = None, speaker_wav: str = None, file_path: str = "output.wav"
):
"""Convert text to speech with voice conversion and save to file.
Check `tts_with_vc` for more details.
Args:
text (str):
Input text to synthesize.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
file_path (str, optional):
Output file path. Defaults to "output.wav".
"""
wav = self.tts_with_vc(text=text, language=language, speaker_wav=speaker_wav)
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)
|