Spaces:
Sleeping
Sleeping
import argparse | |
from argparse import RawTextHelpFormatter | |
import torch | |
from tqdm import tqdm | |
from TTS.config import load_config | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.utils.speakers import SpeakerManager | |
def compute_encoder_accuracy(dataset_items, encoder_manager): | |
class_name_key = encoder_manager.encoder_config.class_name_key | |
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None) | |
class_acc_dict = {} | |
# compute embeddings for all wav_files | |
for item in tqdm(dataset_items): | |
class_name = item[class_name_key] | |
wav_file = item["audio_file"] | |
# extract the embedding | |
embedd = encoder_manager.compute_embedding_from_clip(wav_file) | |
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None: | |
embedding = torch.FloatTensor(embedd).unsqueeze(0) | |
if encoder_manager.use_cuda: | |
embedding = embedding.cuda() | |
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item() | |
predicted_label = map_classid_to_classname[str(class_id)] | |
else: | |
predicted_label = None | |
if class_name is not None and predicted_label is not None: | |
is_equal = int(class_name == predicted_label) | |
if class_name not in class_acc_dict: | |
class_acc_dict[class_name] = [is_equal] | |
else: | |
class_acc_dict[class_name].append(is_equal) | |
else: | |
raise RuntimeError("Error: class_name or/and predicted_label are None") | |
acc_avg = 0 | |
for key, values in class_acc_dict.items(): | |
acc = sum(values) / len(values) | |
print("Class", key, "Accuracy:", acc) | |
acc_avg += acc | |
print("Average Accuracy:", acc_avg / len(class_acc_dict)) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="""Compute the accuracy of the encoder.\n\n""" | |
""" | |
Example runs: | |
python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json | |
""", | |
formatter_class=RawTextHelpFormatter, | |
) | |
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") | |
parser.add_argument( | |
"config_path", | |
type=str, | |
help="Path to model config file.", | |
) | |
parser.add_argument( | |
"config_dataset_path", | |
type=str, | |
help="Path to dataset config file.", | |
) | |
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True) | |
parser.add_argument("--eval", type=bool, help="compute eval.", default=True) | |
args = parser.parse_args() | |
c_dataset = load_config(args.config_dataset_path) | |
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval) | |
items = meta_data_train + meta_data_eval | |
enc_manager = SpeakerManager( | |
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda | |
) | |
compute_encoder_accuracy(items, enc_manager) | |