Spaces:
Sleeping
Sleeping
import argparse | |
import glob | |
import multiprocessing | |
import os | |
import pathlib | |
import torch | |
from tqdm import tqdm | |
from TTS.utils.vad import get_vad_model_and_utils, remove_silence | |
torch.set_num_threads(1) | |
def adjust_path_and_remove_silence(audio_path): | |
output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, "")) | |
# ignore if the file exists | |
if os.path.exists(output_path) and not args.force: | |
return output_path, False | |
# create all directory structure | |
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True) | |
# remove the silence and save the audio | |
output_path, is_speech = remove_silence( | |
model_and_utils, | |
audio_path, | |
output_path, | |
trim_just_beginning_and_end=args.trim_just_beginning_and_end, | |
use_cuda=args.use_cuda, | |
) | |
return output_path, is_speech | |
def preprocess_audios(): | |
files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True)) | |
print("> Number of files: ", len(files)) | |
if not args.force: | |
print("> Ignoring files that already exist in the output idrectory.") | |
if args.trim_just_beginning_and_end: | |
print("> Trimming just the beginning and the end with nonspeech parts.") | |
else: | |
print("> Trimming all nonspeech parts.") | |
filtered_files = [] | |
if files: | |
# create threads | |
# num_threads = multiprocessing.cpu_count() | |
# process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15) | |
if args.num_processes > 1: | |
with multiprocessing.Pool(processes=args.num_processes) as pool: | |
results = list( | |
tqdm( | |
pool.imap_unordered(adjust_path_and_remove_silence, files), | |
total=len(files), | |
desc="Processing audio files", | |
) | |
) | |
for output_path, is_speech in results: | |
if not is_speech: | |
filtered_files.append(output_path) | |
else: | |
for f in tqdm(files): | |
output_path, is_speech = adjust_path_and_remove_silence(f) | |
if not is_speech: | |
filtered_files.append(output_path) | |
# write files that do not have speech | |
with open(os.path.join(args.output_dir, "filtered_files.txt"), "w", encoding="utf-8") as f: | |
for file in filtered_files: | |
f.write(str(file) + "\n") | |
else: | |
print("> No files Found !") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True" | |
) | |
parser.add_argument("-i", "--input_dir", type=str, help="Dataset root dir", required=True) | |
parser.add_argument("-o", "--output_dir", type=str, help="Output Dataset dir", default="") | |
parser.add_argument("-f", "--force", default=False, action="store_true", help="Force the replace of exists files") | |
parser.add_argument( | |
"-g", | |
"--glob", | |
type=str, | |
default="**/*.wav", | |
help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav", | |
) | |
parser.add_argument( | |
"-t", | |
"--trim_just_beginning_and_end", | |
type=bool, | |
default=True, | |
help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True", | |
) | |
parser.add_argument( | |
"-c", | |
"--use_cuda", | |
type=bool, | |
default=False, | |
help="If True use cuda", | |
) | |
parser.add_argument( | |
"--use_onnx", | |
type=bool, | |
default=False, | |
help="If True use onnx", | |
) | |
parser.add_argument( | |
"--num_processes", | |
type=int, | |
default=1, | |
help="Number of processes to use", | |
) | |
args = parser.parse_args() | |
if args.output_dir == "": | |
args.output_dir = args.input_dir | |
# load the model and utils | |
model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda, use_onnx=args.use_onnx) | |
preprocess_audios() | |