from dataclasses import dataclass, field from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig @dataclass class MultibandMelganConfig(BaseGANVocoderConfig): """Defines parameters for MultiBandMelGAN vocoder. Example: >>> from TTS.vocoder.configs import MultibandMelganConfig >>> config = MultibandMelganConfig() Args: model (str): Model name used for selecting the right model at initialization. Defaults to `multiband_melgan`. discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to 'melgan_multiscale_discriminator`. discriminator_model_params (dict): The discriminator model parameters. Defaults to '{ "base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4] }` generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is considered as a generator too. Defaults to `melgan_generator`. generator_model_param (dict): The generator model parameters. Defaults to `{"upsample_factors": [8, 4, 2], "num_res_blocks": 4}`. use_pqmf (bool): enable / disable PQMF modulation for multi-band training. Defaults to True. lr_gen (float): Initial learning rate for the generator model. Defaults to 0.0001. lr_disc (float): Initial learning rate for the discriminator model. Defaults to 0.0001. optimizer (torch.optim.Optimizer): Optimizer used for the training. Defaults to `AdamW`. optimizer_params (dict): Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` lr_scheduler_gen (torch.optim.Scheduler): Learning rate scheduler for the generator. Defaults to `MultiStepLR`. lr_scheduler_gen_params (dict): Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. lr_scheduler_disc (torch.optim.Scheduler): Learning rate scheduler for the discriminator. Defaults to `MultiStepLR`. lr_scheduler_dict_params (dict): Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. batch_size (int): Batch size used at training. Larger values use more memory. Defaults to 16. seq_len (int): Audio segment length used at training. Larger values use more memory. Defaults to 8192. pad_short (int): Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. use_noise_augment (bool): enable / disable random noise added to the input waveform. The noise is added after computing the features. Defaults to True. use_cache (bool): enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is not large enough. Defaults to True. steps_to_start_discriminator (int): Number of steps required to start training the discriminator. Defaults to 0. use_stft_loss (bool):` enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. use_subband_stft (bool): enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. use_mse_gan_loss (bool): enable / disable using Mean Squeare Error GAN loss. Defaults to True. use_hinge_gan_loss (bool): enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. Defaults to False. use_feat_match_loss (bool): enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. use_l1_spec_loss (bool): enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. stft_loss_params (dict): STFT loss parameters. Default to `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total model loss. Defaults to 0.5. subband_stft_loss_weight (float): Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. mse_G_loss_weight (float): MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. hinge_G_loss_weight (float): Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. feat_match_loss_weight (float): Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. l1_spec_loss_weight (float): L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. """ model: str = "multiband_melgan" # Model specific params discriminator_model: str = "melgan_multiscale_discriminator" discriminator_model_params: dict = field( default_factory=lambda: {"base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4]} ) generator_model: str = "multiband_melgan_generator" generator_model_params: dict = field(default_factory=lambda: {"upsample_factors": [8, 4, 2], "num_res_blocks": 4}) use_pqmf: bool = True # optimizer - overrides lr_gen: float = 0.0001 # Initial learning rate. lr_disc: float = 0.0001 # Initial learning rate. optimizer: str = "AdamW" optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) lr_scheduler_gen: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html lr_scheduler_gen_params: dict = field( default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} ) lr_scheduler_disc: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html lr_scheduler_disc_params: dict = field( default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} ) # Training - overrides batch_size: int = 64 seq_len: int = 16384 pad_short: int = 2000 use_noise_augment: bool = False use_cache: bool = True steps_to_start_discriminator: bool = 200000 # LOSS PARAMETERS - overrides use_stft_loss: bool = True use_subband_stft_loss: bool = True use_mse_gan_loss: bool = True use_hinge_gan_loss: bool = False use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and HifiGAN) use_l1_spec_loss: bool = False subband_stft_loss_params: dict = field( default_factory=lambda: {"n_ffts": [384, 683, 171], "hop_lengths": [30, 60, 10], "win_lengths": [150, 300, 60]} ) # loss weights - overrides stft_loss_weight: float = 0.5 subband_stft_loss_weight: float = 0 mse_G_loss_weight: float = 2.5 hinge_G_loss_weight: float = 0 feat_match_loss_weight: float = 108 l1_spec_loss_weight: float = 0