Spaces:
Runtime error
Runtime error
cumulative change
Browse files
backend/disentangle_concepts.py
CHANGED
@@ -103,6 +103,10 @@ def regenerate_images(model, z, decision_boundary, min_epsilon=-3, max_epsilon=3
|
|
103 |
|
104 |
return images, lambdas
|
105 |
|
|
|
|
|
|
|
|
|
106 |
def generate_original_image(z, model, latent_space='Z'):
|
107 |
"""
|
108 |
The generate_original_image function takes in a latent vector and the model,
|
|
|
103 |
|
104 |
return images, lambdas
|
105 |
|
106 |
+
def generate_joint_effect(model, z, decision_boundaries, min_epsilon=-3, max_epsilon=3, count=5, latent_space='Z'):
|
107 |
+
decision_boundary_joint = np.sum(decision_boundaries, axis=1)
|
108 |
+
return regenerate_images(model, z, decision_boundary_joint, min_epsilon=min_epsilon, max_epsilon=max_epsilon, count=count, latent_space=latent_space)
|
109 |
+
|
110 |
def generate_original_image(z, model, latent_space='Z'):
|
111 |
"""
|
112 |
The generate_original_image function takes in a latent vector and the model,
|
pages/2_Concepts_comparison.py
CHANGED
@@ -5,8 +5,8 @@ import pickle
|
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
from pyvis.network import Network
|
8 |
-
import networkx as nx
|
9 |
|
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
|
12 |
from matplotlib.backends.backend_agg import RendererAgg
|
@@ -94,8 +94,6 @@ smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgr
|
|
94 |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
95 |
with output_col_1:
|
96 |
vectors, nodes_in_common, performances = get_concepts_vectors(concept_ids, annotations, ann_df, latent_space=space_id)
|
97 |
-
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
98 |
-
#st.write('Concept vector', separation_vector)
|
99 |
header_col_1.write(f'Concepts {", ".join(concept_ids)} - Latent space {space_id} - Relevant nodes in common: {nodes_in_common} - Performance of the concept vectors: {performances}')# - Nodes {",".join(list(imp_nodes))}')
|
100 |
|
101 |
edges = []
|
@@ -144,7 +142,7 @@ with output_col_1:
|
|
144 |
|
145 |
with output_col_2:
|
146 |
with open('data/CLIP_vecs.pkl', 'rb') as f:
|
147 |
-
|
148 |
|
149 |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
150 |
#st.write('Concept vector', separation_vector)
|
@@ -155,7 +153,7 @@ with output_col_2:
|
|
155 |
for c2 in concept_ids:
|
156 |
if c1 != c2:
|
157 |
print(f'Similarity between {c1} and {c2}')
|
158 |
-
similarity = cosine_similarity(
|
159 |
print(np.round(similarity[0][0], 3))
|
160 |
edges_clip.append((c1, c2, float(np.round(similarity[0][0], 3))))
|
161 |
|
@@ -195,65 +193,69 @@ with output_col_2:
|
|
195 |
components.html(HtmlFile.read(), height=435)
|
196 |
|
197 |
# ----------------------------- INPUT column 2 & 3 ----------------------------
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
#
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
|
206 |
-
|
207 |
-
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
#
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
# # ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
227 |
|
228 |
-
# #model = torch.load('./data/model_files/pytorch_model.bin', map_location=torch.device('cpu'))
|
229 |
-
# with dnnlib.util.open_url('./data/model_files/network-snapshot-010600.pkl') as f:
|
230 |
-
# model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
|
242 |
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
from pyvis.network import Network
|
|
|
8 |
|
9 |
+
import random
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
|
12 |
from matplotlib.backends.backend_agg import RendererAgg
|
|
|
94 |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
95 |
with output_col_1:
|
96 |
vectors, nodes_in_common, performances = get_concepts_vectors(concept_ids, annotations, ann_df, latent_space=space_id)
|
|
|
|
|
97 |
header_col_1.write(f'Concepts {", ".join(concept_ids)} - Latent space {space_id} - Relevant nodes in common: {nodes_in_common} - Performance of the concept vectors: {performances}')# - Nodes {",".join(list(imp_nodes))}')
|
98 |
|
99 |
edges = []
|
|
|
142 |
|
143 |
with output_col_2:
|
144 |
with open('data/CLIP_vecs.pkl', 'rb') as f:
|
145 |
+
vectors_CLIP = pickle.load(f)
|
146 |
|
147 |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
148 |
#st.write('Concept vector', separation_vector)
|
|
|
153 |
for c2 in concept_ids:
|
154 |
if c1 != c2:
|
155 |
print(f'Similarity between {c1} and {c2}')
|
156 |
+
similarity = cosine_similarity(vectors_CLIP[c1].reshape(1, -1), vectors_CLIP[c2].reshape(1, -1))
|
157 |
print(np.round(similarity[0][0], 3))
|
158 |
edges_clip.append((c1, c2, float(np.round(similarity[0][0], 3))))
|
159 |
|
|
|
193 |
components.html(HtmlFile.read(), height=435)
|
194 |
|
195 |
# ----------------------------- INPUT column 2 & 3 ----------------------------
|
196 |
+
with input_col_2:
|
197 |
+
with st.form('image_form'):
|
198 |
|
199 |
+
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
200 |
+
st.write('**Choose or generate a random image to test the disentanglement**')
|
201 |
+
chosen_image_id_input = st.empty()
|
202 |
+
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
203 |
|
204 |
+
choose_image_button = st.form_submit_button('Choose the defined image')
|
205 |
+
random_id = st.form_submit_button('Generate a random image')
|
206 |
|
207 |
+
if random_id:
|
208 |
+
image_id = random.randint(0, 50000)
|
209 |
+
st.session_state.image_id = image_id
|
210 |
+
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
211 |
|
212 |
+
if choose_image_button:
|
213 |
+
image_id = int(image_id)
|
214 |
+
st.session_state.image_id = int(image_id)
|
215 |
+
# st.write(image_id, st.session_state.image_id)
|
216 |
+
|
217 |
+
with input_col_3:
|
218 |
+
with st.form('Variate along the disentangled concepts'):
|
219 |
+
st.write('**Set range of change**')
|
220 |
+
chosen_epsilon_input = st.empty()
|
221 |
+
epsilon = chosen_epsilon_input.number_input('Epsilon:', min_value=1, step=1)
|
222 |
+
epsilon_button = st.form_submit_button('Choose the defined epsilon')
|
223 |
|
224 |
# # ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
225 |
|
|
|
|
|
|
|
226 |
|
227 |
+
with dnnlib.util.open_url('./data/model_files/network-snapshot-010600.pkl') as f:
|
228 |
+
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
|
229 |
+
|
230 |
+
if st.session_state.space_id == 'Z':
|
231 |
+
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
|
232 |
+
else:
|
233 |
+
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
234 |
+
|
235 |
+
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
236 |
+
# input_image = original_image_dict['image']
|
237 |
+
# input_label = original_image_dict['label']
|
238 |
+
# input_id = original_image_dict['id']
|
239 |
|
240 |
+
with smoothgrad_col_3:
|
241 |
+
st.image(img)
|
242 |
+
smooth_head_3.write(f'Base image')
|
243 |
|
244 |
|
245 |
+
images, lambdas = generate_joint_effect(model, original_image_vec, vectors, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id)
|
246 |
|
247 |
+
with smoothgrad_col_1:
|
248 |
+
st.image(images[0])
|
249 |
+
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
|
250 |
|
251 |
+
with smoothgrad_col_2:
|
252 |
+
st.image(images[1])
|
253 |
+
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
|
254 |
|
255 |
+
with smoothgrad_col_4:
|
256 |
+
st.image(images[3])
|
257 |
+
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
|
258 |
|
259 |
+
with smoothgrad_col_5:
|
260 |
+
st.image(images[4])
|
261 |
+
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}')
|