Spaces:
Runtime error
Runtime error
working version
Browse files
data/stored_vectors/scores_colors_hsv.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d237e5efaac5afd98d777681cbfbf77bf7c41b8e4f221557fc588ab17e5e42b
|
3 |
+
size 974255
|
pages/1_Textiles_Disentanglement.py
CHANGED
@@ -34,6 +34,13 @@ with open(annotations_file, 'rb') as f:
|
|
34 |
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
|
35 |
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')]
|
36 |
concept_vectors['score'] = concept_vectors['score'].astype(float)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()
|
38 |
|
39 |
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:
|
@@ -53,14 +60,25 @@ if 'saturation_lambda' not in st.session_state:
|
|
53 |
st.session_state.saturation_lambda = 0
|
54 |
if 'value_lambda' not in st.session_state:
|
55 |
st.session_state.value_lambda = 0
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# def on_change_random_input():
|
59 |
# st.session_state.image_id = st.session_state.image_id
|
60 |
|
61 |
# ----------------------------- INPUT ----------------------------------
|
62 |
st.header('Input')
|
63 |
-
input_col_1, input_col_2, input_col_3 = st.columns(
|
64 |
# --------------------------- INPUT column 1 ---------------------------
|
65 |
with input_col_1:
|
66 |
with st.form('image_form'):
|
@@ -80,44 +98,69 @@ with input_col_1:
|
|
80 |
|
81 |
if choose_image_button:
|
82 |
image_id = int(image_id)
|
83 |
-
st.session_state.image_id =
|
84 |
|
85 |
with input_col_2:
|
86 |
with st.form('text_form_1'):
|
87 |
|
88 |
st.write('**Choose color to vary**')
|
89 |
-
type_col = st.selectbox('Color:', tuple(COLORS_LIST))
|
90 |
colors_button = st.form_submit_button('Choose the defined color')
|
91 |
|
92 |
st.write('**Set range of change**')
|
93 |
chosen_color_lambda_input = st.empty()
|
94 |
-
color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value
|
95 |
-
color_lambda_button = st.form_submit_button('Choose the defined lambda')
|
96 |
|
97 |
if colors_button or color_lambda_button:
|
|
|
98 |
st.session_state.concept_ids = type_col
|
99 |
st.session_state.color_lambda = color_lambda
|
100 |
|
101 |
-
|
102 |
-
|
103 |
|
104 |
with input_col_3:
|
105 |
with st.form('text_form'):
|
106 |
|
107 |
st.write('**Saturation variation**')
|
108 |
chosen_saturation_lambda_input = st.empty()
|
109 |
-
saturation_lambda = chosen_saturation_lambda_input.number_input('Lambda:', min_value
|
110 |
-
saturation_lambda_button = st.form_submit_button('Choose the defined lambda for
|
111 |
|
112 |
st.write('**Value variation**')
|
113 |
chosen_value_lambda_input = st.empty()
|
114 |
-
value_lambda = chosen_value_lambda_input.number_input('Lambda:', min_value
|
115 |
-
value_lambda_button = st.form_submit_button('Choose the defined lambda for
|
116 |
|
117 |
if saturation_lambda_button or value_lambda_button:
|
118 |
st.session_state.saturation_lambda = int(saturation_lambda)
|
119 |
st.session_state.value_lambda = int(value_lambda)
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
# with input_col_4:
|
122 |
# with st.form('Network specifics:'):
|
123 |
# st.write('**Choose a latent space to use**')
|
@@ -153,9 +196,19 @@ with header_col_1:
|
|
153 |
st.write(f'Original image')
|
154 |
|
155 |
with header_col_2:
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
st.write(f'Change in {st.session_state.concept_ids} of {np.round(st.session_state.color_lambda, 2)}, in saturation of {np.round(st.session_state.saturation_lambda, 2)}, in value of {np.round(st.session_state.value_lambda, 2)}. - Performance color vector: {performance_color}, saturation vector: {performance_saturation/100}, value vector: {performance_value/100}')
|
160 |
|
161 |
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
|
|
34 |
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
|
35 |
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')]
|
36 |
concept_vectors['score'] = concept_vectors['score'].astype(float)
|
37 |
+
|
38 |
+
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']]
|
39 |
+
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']]
|
40 |
+
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']]
|
41 |
+
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']]
|
42 |
+
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']]
|
43 |
+
|
44 |
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()
|
45 |
|
46 |
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:
|
|
|
60 |
st.session_state.saturation_lambda = 0
|
61 |
if 'value_lambda' not in st.session_state:
|
62 |
st.session_state.value_lambda = 0
|
63 |
+
if 'sign' not in st.session_state:
|
64 |
+
st.session_state.sign = False
|
65 |
+
if 'extremes' not in st.session_state:
|
66 |
+
st.session_state.extremes = False
|
67 |
+
if 'regularization' not in st.session_state:
|
68 |
+
st.session_state.regularization = False
|
69 |
+
if 'cl_method' not in st.session_state:
|
70 |
+
st.session_state.cl_method = False
|
71 |
+
if 'num_factors' not in st.session_state:
|
72 |
+
st.session_state.num_factors = False
|
73 |
+
if 'best' not in st.session_state:
|
74 |
+
st.session_state.best = True
|
75 |
|
76 |
# def on_change_random_input():
|
77 |
# st.session_state.image_id = st.session_state.image_id
|
78 |
|
79 |
# ----------------------------- INPUT ----------------------------------
|
80 |
st.header('Input')
|
81 |
+
input_col_1, input_col_2, input_col_3, input_col_4 = st.columns(4)
|
82 |
# --------------------------- INPUT column 1 ---------------------------
|
83 |
with input_col_1:
|
84 |
with st.form('image_form'):
|
|
|
98 |
|
99 |
if choose_image_button:
|
100 |
image_id = int(image_id)
|
101 |
+
st.session_state.image_id = image_id
|
102 |
|
103 |
with input_col_2:
|
104 |
with st.form('text_form_1'):
|
105 |
|
106 |
st.write('**Choose color to vary**')
|
107 |
+
type_col = st.selectbox('Color:', tuple(COLORS_LIST), index=7)
|
108 |
colors_button = st.form_submit_button('Choose the defined color')
|
109 |
|
110 |
st.write('**Set range of change**')
|
111 |
chosen_color_lambda_input = st.empty()
|
112 |
+
color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value=-100, step=1, value=7)
|
113 |
+
color_lambda_button = st.form_submit_button('Choose the defined lambda for color')
|
114 |
|
115 |
if colors_button or color_lambda_button:
|
116 |
+
st.session_state.image_id = image_id
|
117 |
st.session_state.concept_ids = type_col
|
118 |
st.session_state.color_lambda = color_lambda
|
119 |
|
|
|
|
|
120 |
|
121 |
with input_col_3:
|
122 |
with st.form('text_form'):
|
123 |
|
124 |
st.write('**Saturation variation**')
|
125 |
chosen_saturation_lambda_input = st.empty()
|
126 |
+
saturation_lambda = chosen_saturation_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=0, value=0)
|
127 |
+
saturation_lambda_button = st.form_submit_button('Choose the defined lambda for saturation')
|
128 |
|
129 |
st.write('**Value variation**')
|
130 |
chosen_value_lambda_input = st.empty()
|
131 |
+
value_lambda = chosen_value_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=1, value=0)
|
132 |
+
value_lambda_button = st.form_submit_button('Choose the defined lambda for salue')
|
133 |
|
134 |
if saturation_lambda_button or value_lambda_button:
|
135 |
st.session_state.saturation_lambda = int(saturation_lambda)
|
136 |
st.session_state.value_lambda = int(value_lambda)
|
137 |
|
138 |
+
with input_col_4:
|
139 |
+
with st.form('text_form_2'):
|
140 |
+
st.write('Use best options')
|
141 |
+
best = st.selectbox('Option:', tuple([True, False]), index=0)
|
142 |
+
st.write('Options for StyleSpace (not available for Saturation and Value)')
|
143 |
+
sign = st.selectbox('Sign option:', tuple([True, False]), index=1)
|
144 |
+
num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4)
|
145 |
+
st.write('Options for InterFaceGAN (not available for Saturation and Value)')
|
146 |
+
cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2)
|
147 |
+
regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2)
|
148 |
+
st.write('Options for InterFaceGAN (only for Saturation and Value)')
|
149 |
+
extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1)
|
150 |
+
|
151 |
+
choose_options_button = st.form_submit_button('Choose the defined options')
|
152 |
+
# st.write('**Choose a latent space to disentangle**')
|
153 |
+
# # chosen_text_id_input = st.empty()
|
154 |
+
# # concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
|
155 |
+
# space_id = st.selectbox('Space:', tuple(['Z', 'W']))
|
156 |
+
if choose_options_button:
|
157 |
+
st.session_state.sign = sign
|
158 |
+
st.session_state.num_factors = num_factors
|
159 |
+
st.session_state.cl_method = cl_method
|
160 |
+
st.session_state.regularization = regularization
|
161 |
+
st.session_state.extremes = extremes
|
162 |
+
st.session_state.best = best
|
163 |
+
|
164 |
# with input_col_4:
|
165 |
# with st.form('Network specifics:'):
|
166 |
# st.write('**Choose a latent space to use**')
|
|
|
196 |
st.write(f'Original image')
|
197 |
|
198 |
with header_col_2:
|
199 |
+
if st.session_state.best:
|
200 |
+
color_separation_vector, performance_color = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids].reset_index().loc[0, ['vector', 'score']]
|
201 |
+
saturation_separation_vector, performance_saturation = concept_vectors[concept_vectors['color'] == 'Saturation'].reset_index().loc[0, ['vector', 'score']]
|
202 |
+
value_separation_vector, performance_value = concept_vectors[concept_vectors['color'] == 'Value'].reset_index().loc[0, ['vector', 'score']]
|
203 |
+
else:
|
204 |
+
tmp = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids]
|
205 |
+
tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization]
|
206 |
+
color_separation_vector, performance_color = tmp.reset_index().loc[0, ['vector', 'score']]
|
207 |
+
tmp_value = concept_vectors[concept_vectors['color'] == 'Value'][concept_vectors['extremes'] == st.session_state.extremes]
|
208 |
+
value_separation_vector, performance_value = tmp_value.reset_index().loc[0, ['vector', 'score']]
|
209 |
+
tmp_sat = concept_vectors[concept_vectors['color'] == 'Saturation'][concept_vectors['extremes'] == st.session_state.extremes]
|
210 |
+
saturation_separation_vector, performance_saturation = tmp_sat.reset_index().loc[0, ['vector', 'score']]
|
211 |
+
|
212 |
st.write(f'Change in {st.session_state.concept_ids} of {np.round(st.session_state.color_lambda, 2)}, in saturation of {np.round(st.session_state.saturation_lambda, 2)}, in value of {np.round(st.session_state.value_lambda, 2)}. - Performance color vector: {performance_color}, saturation vector: {performance_saturation/100}, value vector: {performance_value/100}')
|
213 |
|
214 |
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
pages/2_Colours_comparison.py
CHANGED
@@ -22,91 +22,124 @@ HIGHTLIGHT_COLOR = '#e7bcc5'
|
|
22 |
st.set_page_config(layout='wide')
|
23 |
|
24 |
|
25 |
-
st.title('Comparison among
|
26 |
-
st.write('> **How do the
|
27 |
-
st.write('> **What is their
|
28 |
-
st.write("""Description to write""")
|
29 |
|
30 |
-
|
31 |
-
annotations_file = './data/
|
32 |
with open(annotations_file, 'rb') as f:
|
33 |
annotations = pickle.load(f)
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
labels = [line.strip() for line in f.readlines()]
|
40 |
|
41 |
if 'image_id' not in st.session_state:
|
42 |
st.session_state.image_id = 0
|
43 |
if 'concept_ids' not in st.session_state:
|
44 |
-
st.session_state.concept_ids = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
if 'space_id' not in st.session_state:
|
46 |
-
st.session_state.space_id = '
|
47 |
-
# def on_change_random_input():
|
48 |
-
# st.session_state.image_id = st.session_state.image_id
|
49 |
|
50 |
# ----------------------------- INPUT ----------------------------------
|
51 |
st.header('Input')
|
52 |
-
input_col_1, input_col_2
|
53 |
# --------------------------- INPUT column 1 ---------------------------
|
54 |
with input_col_1:
|
55 |
with st.form('text_form'):
|
56 |
|
57 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
58 |
-
st.write('**Choose a series of
|
59 |
# chosen_text_id_input = st.empty()
|
60 |
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
|
61 |
-
concept_ids = st.multiselect('
|
62 |
-
|
63 |
-
st.write('**Choose a latent space to disentangle**')
|
64 |
-
# chosen_text_id_input = st.empty()
|
65 |
-
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
|
66 |
-
space_id = st.selectbox('Space:', tuple(['Z', 'W']))
|
67 |
-
|
68 |
-
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
|
69 |
|
70 |
if choose_text_button:
|
71 |
st.session_state.concept_ids = list(concept_ids)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# ---------------------------- SET UP OUTPUT ------------------------------
|
77 |
epsilon_container = st.empty()
|
78 |
-
st.header('
|
79 |
-
st.subheader('
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1])
|
84 |
-
header_col_1, header_col_2 = st.columns([1,1])
|
85 |
-
output_col_1, output_col_2 = st.columns([1,1])
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
-
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
98 |
with output_col_1:
|
99 |
-
|
100 |
-
header_col_1.write(f'Concepts {", ".join(concept_ids)} - Latent space {space_id} - Relevant nodes in common: {nodes_in_common} - Performance of the concept vectors: {performances}')# - Nodes {",".join(list(imp_nodes))}')
|
101 |
-
|
102 |
edges = []
|
103 |
for i in range(len(concept_ids)):
|
104 |
for j in range(len(concept_ids)):
|
105 |
-
if i != j:
|
106 |
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}')
|
107 |
-
similarity = cosine_similarity(
|
108 |
print(np.round(similarity[0][0], 3))
|
109 |
-
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0], 3)))
|
110 |
|
111 |
|
112 |
net = Network(height="750px", width="100%",)
|
@@ -142,123 +175,3 @@ with output_col_1:
|
|
142 |
|
143 |
# Load HTML file in HTML component for display on Streamlit page
|
144 |
components.html(HtmlFile.read(), height=435)
|
145 |
-
|
146 |
-
with output_col_2:
|
147 |
-
with open('data/CLIP_vecs.pkl', 'rb') as f:
|
148 |
-
vectors_CLIP = pickle.load(f)
|
149 |
-
|
150 |
-
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
151 |
-
#st.write('Concept vector', separation_vector)
|
152 |
-
header_col_2.write(f'Concepts {", ".join(concept_ids)} - Latent space CLIP')# - Nodes {",".join(list(imp_nodes))}')
|
153 |
-
|
154 |
-
edges_clip = []
|
155 |
-
for c1 in concept_ids:
|
156 |
-
for c2 in concept_ids:
|
157 |
-
if c1 != c2:
|
158 |
-
print(f'Similarity between {c1} and {c2}')
|
159 |
-
similarity = cosine_similarity(vectors_CLIP[c1].reshape(1, -1), vectors_CLIP[c2].reshape(1, -1))
|
160 |
-
print(np.round(similarity[0][0], 3))
|
161 |
-
edges_clip.append((c1, c2, np.round(float(np.round(similarity[0][0], 3)), 3)))
|
162 |
-
|
163 |
-
|
164 |
-
net_clip = Network(height="750px", width="100%",)
|
165 |
-
for e in edges_clip:
|
166 |
-
src = e[0]
|
167 |
-
dst = e[1]
|
168 |
-
w = e[2]
|
169 |
-
|
170 |
-
net_clip.add_node(src, src, title=src)
|
171 |
-
net_clip.add_node(dst, dst, title=dst)
|
172 |
-
net_clip.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w))
|
173 |
-
|
174 |
-
# Generate network with specific layout settings
|
175 |
-
net_clip.repulsion(
|
176 |
-
node_distance=420,
|
177 |
-
central_gravity=0.33,
|
178 |
-
spring_length=110,
|
179 |
-
spring_strength=0.10,
|
180 |
-
damping=0.95
|
181 |
-
)
|
182 |
-
|
183 |
-
# Save and read graph as HTML file (on Streamlit Sharing)
|
184 |
-
try:
|
185 |
-
path = '/tmp'
|
186 |
-
net_clip.save_graph(f'{path}/pyvis_graph_clip.html')
|
187 |
-
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8')
|
188 |
-
|
189 |
-
# Save and read graph as HTML file (locally)
|
190 |
-
except:
|
191 |
-
path = '/html_files'
|
192 |
-
net_clip.save_graph(f'{path}/pyvis_graph_clip.html')
|
193 |
-
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8')
|
194 |
-
|
195 |
-
# Load HTML file in HTML component for display on Streamlit page
|
196 |
-
components.html(HtmlFile.read(), height=435)
|
197 |
-
|
198 |
-
# ----------------------------- INPUT column 2 & 3 ----------------------------
|
199 |
-
with input_col_2:
|
200 |
-
with st.form('image_form'):
|
201 |
-
|
202 |
-
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
203 |
-
st.write('**Choose or generate a random image to test the disentanglement**')
|
204 |
-
chosen_image_id_input = st.empty()
|
205 |
-
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
206 |
-
|
207 |
-
choose_image_button = st.form_submit_button('Choose the defined image')
|
208 |
-
random_id = st.form_submit_button('Generate a random image')
|
209 |
-
|
210 |
-
if random_id:
|
211 |
-
image_id = random.randint(0, 50000)
|
212 |
-
st.session_state.image_id = image_id
|
213 |
-
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
214 |
-
|
215 |
-
if choose_image_button:
|
216 |
-
image_id = int(image_id)
|
217 |
-
st.session_state.image_id = int(image_id)
|
218 |
-
# st.write(image_id, st.session_state.image_id)
|
219 |
-
|
220 |
-
with input_col_3:
|
221 |
-
with st.form('Variate along the disentangled concepts'):
|
222 |
-
st.write('**Set range of change**')
|
223 |
-
chosen_epsilon_input = st.empty()
|
224 |
-
epsilon = chosen_epsilon_input.number_input('Epsilon:', min_value=1, step=1)
|
225 |
-
epsilon_button = st.form_submit_button('Choose the defined epsilon')
|
226 |
-
|
227 |
-
# # ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
228 |
-
|
229 |
-
|
230 |
-
with dnnlib.util.open_url('./data/model_files/network-snapshot-010600.pkl') as f:
|
231 |
-
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
|
232 |
-
|
233 |
-
if st.session_state.space_id == 'Z':
|
234 |
-
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
|
235 |
-
else:
|
236 |
-
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
237 |
-
|
238 |
-
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
239 |
-
# input_image = original_image_dict['image']
|
240 |
-
# input_label = original_image_dict['label']
|
241 |
-
# input_id = original_image_dict['id']
|
242 |
-
|
243 |
-
with smoothgrad_col_3:
|
244 |
-
st.image(img)
|
245 |
-
smooth_head_3.write(f'Base image')
|
246 |
-
|
247 |
-
|
248 |
-
images, lambdas = generate_joint_effect(model, original_image_vec, vectors, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id)
|
249 |
-
|
250 |
-
with smoothgrad_col_1:
|
251 |
-
st.image(images[0])
|
252 |
-
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
|
253 |
-
|
254 |
-
with smoothgrad_col_2:
|
255 |
-
st.image(images[1])
|
256 |
-
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
|
257 |
-
|
258 |
-
with smoothgrad_col_4:
|
259 |
-
st.image(images[3])
|
260 |
-
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
|
261 |
-
|
262 |
-
with smoothgrad_col_5:
|
263 |
-
st.image(images[4])
|
264 |
-
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}')
|
|
|
22 |
st.set_page_config(layout='wide')
|
23 |
|
24 |
|
25 |
+
st.title('Comparison among color directions')
|
26 |
+
st.write('> **How do the color directions relate to each other?**')
|
27 |
+
st.write('> **What is their joint impact on the image?**')
|
|
|
28 |
|
29 |
+
|
30 |
+
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl'
|
31 |
with open(annotations_file, 'rb') as f:
|
32 |
annotations = pickle.load(f)
|
33 |
|
34 |
+
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
|
35 |
+
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')]
|
36 |
+
concept_vectors['score'] = concept_vectors['score'].astype(float)
|
37 |
+
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']]
|
38 |
+
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']]
|
39 |
+
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']]
|
40 |
+
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']]
|
41 |
+
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']]
|
42 |
+
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()
|
43 |
+
|
44 |
+
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:
|
45 |
+
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
|
46 |
|
47 |
+
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink', 'Saturation', 'Value']
|
|
|
48 |
|
49 |
if 'image_id' not in st.session_state:
|
50 |
st.session_state.image_id = 0
|
51 |
if 'concept_ids' not in st.session_state:
|
52 |
+
st.session_state.concept_ids = [COLORS_LIST[-1], COLORS_LIST[-2], ]
|
53 |
+
if 'sign' not in st.session_state:
|
54 |
+
st.session_state.sign = False
|
55 |
+
if 'extremes' not in st.session_state:
|
56 |
+
st.session_state.extremes = False
|
57 |
+
if 'regularization' not in st.session_state:
|
58 |
+
st.session_state.regularization = False
|
59 |
+
if 'cl_method' not in st.session_state:
|
60 |
+
st.session_state.cl_method = False
|
61 |
+
if 'num_factors' not in st.session_state:
|
62 |
+
st.session_state.num_factors = False
|
63 |
+
|
64 |
+
|
65 |
if 'space_id' not in st.session_state:
|
66 |
+
st.session_state.space_id = 'W'
|
|
|
|
|
67 |
|
68 |
# ----------------------------- INPUT ----------------------------------
|
69 |
st.header('Input')
|
70 |
+
input_col_1, input_col_2 = st.columns([1,1])
|
71 |
# --------------------------- INPUT column 1 ---------------------------
|
72 |
with input_col_1:
|
73 |
with st.form('text_form'):
|
74 |
|
75 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
76 |
+
st.write('**Choose a series of colors to compare**')
|
77 |
# chosen_text_id_input = st.empty()
|
78 |
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
|
79 |
+
concept_ids = st.multiselect('Color (including Saturation and Value):', tuple(COLORS_LIST), default=[COLORS_LIST[-1], COLORS_LIST[-2], ])
|
80 |
+
choose_text_button = st.form_submit_button('Choose the defined colors')
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
if choose_text_button:
|
83 |
st.session_state.concept_ids = list(concept_ids)
|
84 |
+
|
85 |
+
|
86 |
+
with input_col_2:
|
87 |
+
with st.form('text_form_1'):
|
88 |
+
st.write('Options for StyleSpace (not available for Saturation and Value)')
|
89 |
+
sign = st.selectbox('Sign option:', tuple([True, False]), index=1)
|
90 |
+
num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4)
|
91 |
+
st.write('Options for InterFaceGAN (not available for Saturation and Value)')
|
92 |
+
cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2)
|
93 |
+
regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2)
|
94 |
+
st.write('Options for InterFaceGAN (only for Saturation and Value)')
|
95 |
+
extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1)
|
96 |
+
|
97 |
+
choose_options_button = st.form_submit_button('Choose the defined options')
|
98 |
+
# st.write('**Choose a latent space to disentangle**')
|
99 |
+
# # chosen_text_id_input = st.empty()
|
100 |
+
# # concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
|
101 |
+
# space_id = st.selectbox('Space:', tuple(['Z', 'W']))
|
102 |
+
if choose_options_button:
|
103 |
+
st.session_state.sign = sign
|
104 |
+
st.session_state.num_factors = num_factors
|
105 |
+
st.session_state.cl_method = cl_method
|
106 |
+
st.session_state.regularization = regularization
|
107 |
+
st.session_state.extremes = extremes
|
108 |
+
|
109 |
# ---------------------------- SET UP OUTPUT ------------------------------
|
110 |
epsilon_container = st.empty()
|
111 |
+
st.header('Comparison')
|
112 |
+
st.subheader('Color vectors')
|
113 |
|
114 |
+
header_col_1, header_col_2 = st.columns([3,1])
|
115 |
+
output_col_1, output_col_2 = st.columns([3,1])
|
|
|
|
|
|
|
116 |
|
117 |
+
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
118 |
+
tmp = concept_vectors[concept_vectors['color'].isin(st.session_state.concept_ids)]
|
119 |
+
tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['extremes'] == st.session_state.extremes][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization]
|
120 |
+
info = tmp.loc[:, ['vector', 'score', 'color', 'kwargs']].values
|
121 |
+
concept_ids = [i[2] for i in info] #+ ' ' + i[3]
|
122 |
+
|
123 |
+
with header_col_1:
|
124 |
+
st.write('Similarity graph')
|
125 |
|
126 |
+
with header_col_2:
|
127 |
+
st.write('Information')
|
128 |
+
|
129 |
+
with output_col_2:
|
130 |
+
for i,concept_id in enumerate(concept_ids):
|
131 |
+
st.write(f'Color {info[i][2]} - Settings: {info[i][3]} Performance of the color vector: {info[i][1]}')# - Nodes {",".join(list(imp_nodes))}')
|
132 |
|
|
|
133 |
with output_col_1:
|
134 |
+
|
|
|
|
|
135 |
edges = []
|
136 |
for i in range(len(concept_ids)):
|
137 |
for j in range(len(concept_ids)):
|
138 |
+
if i != j and info[i][2] != info[j][2]:
|
139 |
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}')
|
140 |
+
similarity = cosine_similarity(info[i][0].reshape(1, -1), info[j][0].reshape(1, -1))
|
141 |
print(np.round(similarity[0][0], 3))
|
142 |
+
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0] + 0.001, 3)))
|
143 |
|
144 |
|
145 |
net = Network(height="750px", width="100%",)
|
|
|
175 |
|
176 |
# Load HTML file in HTML component for display on Streamlit page
|
177 |
components.html(HtmlFile.read(), height=435)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|