File size: 3,286 Bytes
7e27e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a442ffd
 
7e27e2f
 
 
 
 
 
 
 
a442ffd
7e27e2f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import duckdb
import gradio as gr
import polars as pl
from datasets import load_dataset
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from model2vec import StaticModel

global ds
global df

# Load a model from the HuggingFace hub (in this case the potion-base-8M model)
model_name = "minishlab/M2V_multilingual_output"
model = StaticModel.from_pretrained(model_name)


def get_iframe(hub_repo_id):
    if not hub_repo_id:
        raise ValueError("Hub repo id is required")
    url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
    iframe = f"""
    <iframe
  src="{url}"
  frameborder="0"
  width="100%"
  height="600px"
></iframe>
"""
    return iframe


def load_dataset_from_hub(hub_repo_id):
    global ds
    ds = load_dataset(hub_repo_id)


def get_columns(split: str):
    global ds
    ds_split = ds[split]
    return gr.Dropdown(
        choices=ds_split.column_names,
        value=ds_split.column_names[0],
        label="Select a column",
    )


def get_splits():
    global ds
    splits = list(ds.keys())
    return gr.Dropdown(choices=splits, value=splits[0], label="Select a split")


def vectorize_dataset(split: str, column: str):
    global df
    global ds
    df = ds[split].to_polars()
    embeddings = model.encode(df[column])
    df = df.with_columns(pl.Series(embeddings).alias("embeddings"))


def run_query(query: str):
    global df
    vector = model.encode(query)
    return duckdb.sql(
        query=f"""
        SELECT *
        FROM df
        ORDER BY array_distance(embeddings, {vector.tolist()}::FLOAT[256])
        LIMIT 5
        """
    ).to_df()


with gr.Blocks() as demo:
    gr.HTML(
        """
        <h1>Vector Search any Hugging Face Dataset</h1>
        <p>
            This app allows you to vector search any Hugging Face dataset.
            You can search for the nearest neighbors of a query vector, or
            perform a similarity search on a dataframe.
        </p>
        """
    )
    with gr.Row():
        with gr.Column():
            search_in = HuggingfaceHubSearch(
                label="Search Huggingface Hub",
                placeholder="Search for models on Huggingface",
                search_type="dataset",
                sumbit_on_select=True,
            )
    with gr.Row():
        search_out = gr.HTML(label="Search Results")
    search_in.submit(get_iframe, inputs=search_in, outputs=search_out)

    btn_load_dataset = gr.Button("Load Dataset")

    with gr.Row(variant="panel"):
        split_dropdown = gr.Dropdown(label="Select a split")
        column_dropdown = gr.Dropdown(label="Select a column")
    with gr.Row(variant="panel"):
        query_input = gr.Textbox(label="Query")

    btn_load_dataset.click(
        load_dataset_from_hub, inputs=search_in, show_progress=True
    ).then(fn=get_splits, outputs=split_dropdown).then(
        fn=get_columns, inputs=split_dropdown, outputs=column_dropdown
    )
    split_dropdown.change(
        fn=get_columns, inputs=split_dropdown, outputs=column_dropdown
    ).then(fn=vectorize_dataset, inputs=[split_dropdown, column_dropdown])

    btn_run = gr.Button("Run")
    results_output = gr.Dataframe(label="Results")

    btn_run.click(fn=run_query, inputs=query_input, outputs=results_output)
demo.launch()