Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,12 @@ logging.basicConfig(
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Set environment variables for memory optimization
|
17 |
-
os.environ['TRANSFORMERS_CACHE'] = '/home/user/.cache/huggingface/hub'
|
18 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
19 |
|
20 |
class HealthAssistant:
|
21 |
def __init__(self):
|
22 |
-
self.model_id = "microsoft/Phi-2" # Using smaller Phi-2 model
|
23 |
self.model = None
|
24 |
self.tokenizer = None
|
25 |
self.pipe = None
|
@@ -36,7 +36,6 @@ class HealthAssistant:
|
|
36 |
|
37 |
logger.info(f"Loading model: {self.model_id}")
|
38 |
|
39 |
-
# Initialize tokenizer with optimizations
|
40 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
41 |
self.model_id,
|
42 |
trust_remote_code=True,
|
@@ -45,7 +44,6 @@ class HealthAssistant:
|
|
45 |
)
|
46 |
logger.info("Tokenizer loaded")
|
47 |
|
48 |
-
# Load model with memory optimizations
|
49 |
self.model = AutoModelForCausalLM.from_pretrained(
|
50 |
self.model_id,
|
51 |
torch_dtype=torch.float32,
|
@@ -56,7 +54,6 @@ class HealthAssistant:
|
|
56 |
|
57 |
gc.collect()
|
58 |
|
59 |
-
# Setup pipeline
|
60 |
self.pipe = pipeline(
|
61 |
"text-generation",
|
62 |
model=self.model,
|
@@ -74,7 +71,6 @@ class HealthAssistant:
|
|
74 |
raise
|
75 |
|
76 |
def unload_model(self):
|
77 |
-
"""Unload model to free up memory"""
|
78 |
if hasattr(self, 'model') and self.model is not None:
|
79 |
del self.model
|
80 |
self.model = None
|
@@ -93,7 +89,6 @@ class HealthAssistant:
|
|
93 |
if not self.is_model_loaded:
|
94 |
self.initialize_model()
|
95 |
|
96 |
-
# Limit message length
|
97 |
message = message[:200] # Truncate long messages
|
98 |
|
99 |
prompt = self._prepare_prompt(message, history[-self.max_history_length:] if history else None)
|
@@ -120,10 +115,6 @@ class HealthAssistant:
|
|
120 |
except Exception as e:
|
121 |
logger.error(f"Error generating response: {str(e)}")
|
122 |
return "I apologize, but I encountered an error. Please try again."
|
123 |
-
finally:
|
124 |
-
# Attempt to free memory after each generation
|
125 |
-
if torch.cuda.is_available():
|
126 |
-
torch.cuda.empty_cache()
|
127 |
|
128 |
def _prepare_prompt(self, message: str, history: List = None) -> str:
|
129 |
prompt_parts = [
|
@@ -132,11 +123,17 @@ class HealthAssistant:
|
|
132 |
]
|
133 |
|
134 |
if history:
|
135 |
-
for
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
prompt_parts.extend([
|
142 |
f"Human: {message}",
|
@@ -162,7 +159,6 @@ class HealthAssistant:
|
|
162 |
|
163 |
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
|
164 |
try:
|
165 |
-
# Keep only last 5 metrics
|
166 |
if len(self.metrics) >= 5:
|
167 |
self.metrics.pop(0)
|
168 |
|
@@ -178,7 +174,6 @@ class HealthAssistant:
|
|
178 |
|
179 |
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
|
180 |
try:
|
181 |
-
# Keep only last 5 medications
|
182 |
if len(self.medications) >= 5:
|
183 |
self.medications.pop(0)
|
184 |
|
@@ -209,16 +204,20 @@ class GradioInterface:
|
|
209 |
|
210 |
try:
|
211 |
response = self.assistant.generate_response(message, history)
|
212 |
-
|
|
|
|
|
213 |
|
214 |
-
# Unload model periodically
|
215 |
if len(history) % 3 == 0:
|
216 |
self.assistant.unload_model()
|
217 |
|
218 |
return "", history
|
219 |
except Exception as e:
|
220 |
logger.error(f"Error in chat response: {e}")
|
221 |
-
return "", history + [
|
|
|
|
|
|
|
222 |
|
223 |
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
|
224 |
if not all([weight is not None, steps is not None, sleep is not None]):
|
@@ -254,24 +253,23 @@ class GradioInterface:
|
|
254 |
""")
|
255 |
|
256 |
with gr.Tabs():
|
257 |
-
# Chat Interface
|
258 |
with gr.Tab("💬 Medical Consultation"):
|
259 |
chatbot = gr.Chatbot(
|
260 |
value=[],
|
261 |
height=400,
|
262 |
-
|
|
|
263 |
)
|
264 |
with gr.Row():
|
265 |
msg = gr.Textbox(
|
266 |
placeholder="Ask your health question...",
|
267 |
lines=1,
|
268 |
-
|
269 |
scale=9
|
270 |
)
|
271 |
send_btn = gr.Button("Send", scale=1)
|
272 |
clear_btn = gr.Button("Clear Chat")
|
273 |
|
274 |
-
# Health Metrics
|
275 |
with gr.Tab("📊 Health Metrics"):
|
276 |
gr.Markdown("### Track Your Health Metrics")
|
277 |
with gr.Row():
|
@@ -293,7 +291,6 @@ class GradioInterface:
|
|
293 |
metrics_btn = gr.Button("Save Metrics")
|
294 |
metrics_status = gr.Markdown()
|
295 |
|
296 |
-
# Medication Manager
|
297 |
with gr.Tab("💊 Medication Manager"):
|
298 |
gr.Markdown("### Track Your Medications")
|
299 |
med_name = gr.Textbox(
|
@@ -316,7 +313,6 @@ class GradioInterface:
|
|
316 |
med_btn = gr.Button("Add Medication")
|
317 |
med_status = gr.Markdown()
|
318 |
|
319 |
-
# Event handlers
|
320 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
321 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
322 |
clear_btn.click(lambda: [], None, chatbot)
|
@@ -339,7 +335,7 @@ class GradioInterface:
|
|
339 |
Always consult healthcare professionals for medical decisions.
|
340 |
""")
|
341 |
|
342 |
-
demo.queue(
|
343 |
|
344 |
return demo
|
345 |
|
@@ -348,6 +344,7 @@ def main():
|
|
348 |
interface = GradioInterface()
|
349 |
demo = interface.create_interface()
|
350 |
demo.launch(
|
|
|
351 |
show_error=True,
|
352 |
share=True
|
353 |
)
|
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Set environment variables for memory optimization
|
17 |
+
os.environ['TRANSFORMERS_CACHE'] = '/home/user/.cache/huggingface/hub'
|
18 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
19 |
|
20 |
class HealthAssistant:
|
21 |
def __init__(self):
|
22 |
+
self.model_id = "microsoft/Phi-2" # Using smaller Phi-2 model
|
23 |
self.model = None
|
24 |
self.tokenizer = None
|
25 |
self.pipe = None
|
|
|
36 |
|
37 |
logger.info(f"Loading model: {self.model_id}")
|
38 |
|
|
|
39 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
40 |
self.model_id,
|
41 |
trust_remote_code=True,
|
|
|
44 |
)
|
45 |
logger.info("Tokenizer loaded")
|
46 |
|
|
|
47 |
self.model = AutoModelForCausalLM.from_pretrained(
|
48 |
self.model_id,
|
49 |
torch_dtype=torch.float32,
|
|
|
54 |
|
55 |
gc.collect()
|
56 |
|
|
|
57 |
self.pipe = pipeline(
|
58 |
"text-generation",
|
59 |
model=self.model,
|
|
|
71 |
raise
|
72 |
|
73 |
def unload_model(self):
|
|
|
74 |
if hasattr(self, 'model') and self.model is not None:
|
75 |
del self.model
|
76 |
self.model = None
|
|
|
89 |
if not self.is_model_loaded:
|
90 |
self.initialize_model()
|
91 |
|
|
|
92 |
message = message[:200] # Truncate long messages
|
93 |
|
94 |
prompt = self._prepare_prompt(message, history[-self.max_history_length:] if history else None)
|
|
|
115 |
except Exception as e:
|
116 |
logger.error(f"Error generating response: {str(e)}")
|
117 |
return "I apologize, but I encountered an error. Please try again."
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def _prepare_prompt(self, message: str, history: List = None) -> str:
|
120 |
prompt_parts = [
|
|
|
123 |
]
|
124 |
|
125 |
if history:
|
126 |
+
for h in history:
|
127 |
+
if isinstance(h, dict): # New message format
|
128 |
+
if h['role'] == 'user':
|
129 |
+
prompt_parts.append(f"Human: {h['content'][:100]}")
|
130 |
+
else:
|
131 |
+
prompt_parts.append(f"Assistant: {h['content'][:100]}")
|
132 |
+
else: # Old format (tuple)
|
133 |
+
prompt_parts.extend([
|
134 |
+
f"Human: {h[0][:100]}",
|
135 |
+
f"Assistant: {h[1][:100]}"
|
136 |
+
])
|
137 |
|
138 |
prompt_parts.extend([
|
139 |
f"Human: {message}",
|
|
|
159 |
|
160 |
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
|
161 |
try:
|
|
|
162 |
if len(self.metrics) >= 5:
|
163 |
self.metrics.pop(0)
|
164 |
|
|
|
174 |
|
175 |
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
|
176 |
try:
|
|
|
177 |
if len(self.medications) >= 5:
|
178 |
self.medications.pop(0)
|
179 |
|
|
|
204 |
|
205 |
try:
|
206 |
response = self.assistant.generate_response(message, history)
|
207 |
+
# Convert to new message format
|
208 |
+
history.append({"role": "user", "content": message})
|
209 |
+
history.append({"role": "assistant", "content": response})
|
210 |
|
|
|
211 |
if len(history) % 3 == 0:
|
212 |
self.assistant.unload_model()
|
213 |
|
214 |
return "", history
|
215 |
except Exception as e:
|
216 |
logger.error(f"Error in chat response: {e}")
|
217 |
+
return "", history + [
|
218 |
+
{"role": "user", "content": message},
|
219 |
+
{"role": "assistant", "content": "I apologize, but I encountered an error. Please try again."}
|
220 |
+
]
|
221 |
|
222 |
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
|
223 |
if not all([weight is not None, steps is not None, sleep is not None]):
|
|
|
253 |
""")
|
254 |
|
255 |
with gr.Tabs():
|
|
|
256 |
with gr.Tab("💬 Medical Consultation"):
|
257 |
chatbot = gr.Chatbot(
|
258 |
value=[],
|
259 |
height=400,
|
260 |
+
label=False,
|
261 |
+
type="messages" # Using new message format
|
262 |
)
|
263 |
with gr.Row():
|
264 |
msg = gr.Textbox(
|
265 |
placeholder="Ask your health question...",
|
266 |
lines=1,
|
267 |
+
label=False,
|
268 |
scale=9
|
269 |
)
|
270 |
send_btn = gr.Button("Send", scale=1)
|
271 |
clear_btn = gr.Button("Clear Chat")
|
272 |
|
|
|
273 |
with gr.Tab("📊 Health Metrics"):
|
274 |
gr.Markdown("### Track Your Health Metrics")
|
275 |
with gr.Row():
|
|
|
291 |
metrics_btn = gr.Button("Save Metrics")
|
292 |
metrics_status = gr.Markdown()
|
293 |
|
|
|
294 |
with gr.Tab("💊 Medication Manager"):
|
295 |
gr.Markdown("### Track Your Medications")
|
296 |
med_name = gr.Textbox(
|
|
|
313 |
med_btn = gr.Button("Add Medication")
|
314 |
med_status = gr.Markdown()
|
315 |
|
|
|
316 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
317 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
318 |
clear_btn.click(lambda: [], None, chatbot)
|
|
|
335 |
Always consult healthcare professionals for medical decisions.
|
336 |
""")
|
337 |
|
338 |
+
demo.queue(max_size=5)
|
339 |
|
340 |
return demo
|
341 |
|
|
|
344 |
interface = GradioInterface()
|
345 |
demo = interface.create_interface()
|
346 |
demo.launch(
|
347 |
+
server_name="0.0.0.0",
|
348 |
show_error=True,
|
349 |
share=True
|
350 |
)
|