Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,150 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
-
from
|
5 |
import logging
|
6 |
from typing import List, Dict
|
7 |
import gc
|
8 |
import os
|
9 |
|
10 |
-
# Setup logging
|
11 |
-
logging.basicConfig(
|
|
|
|
|
|
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
|
|
|
|
|
|
14 |
class HealthAssistant:
|
15 |
-
def __init__(self):
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
self.model = None
|
18 |
self.tokenizer = None
|
19 |
-
self.processor = None
|
20 |
self.metrics = []
|
21 |
self.medications = []
|
22 |
self.initialize_model()
|
23 |
|
24 |
def initialize_model(self):
|
25 |
try:
|
26 |
-
logger.info("
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
self.model_name,
|
30 |
-
torch_dtype="auto",
|
31 |
-
device_map="auto",
|
32 |
trust_remote_code=True
|
33 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
self.
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
except Exception as e:
|
39 |
-
logger.error(f"Error
|
40 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def generate_response(self, message: str, history: List = None) -> str:
|
43 |
try:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Prepare
|
48 |
-
|
49 |
-
messages,
|
50 |
-
tokenize=False,
|
51 |
-
add_generation_prompt=True
|
52 |
-
)
|
53 |
-
|
54 |
-
# Process vision info (empty for text-only)
|
55 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
|
57 |
-
#
|
58 |
-
inputs = self.
|
59 |
-
|
60 |
-
|
61 |
-
videos=video_inputs,
|
62 |
padding=True,
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# Move to appropriate device
|
67 |
-
inputs = inputs.to(self.model.device)
|
68 |
|
69 |
-
# Generate
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
#
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
output_text = self.processor.batch_decode(
|
84 |
-
generated_ids_trimmed,
|
85 |
-
skip_special_tokens=True,
|
86 |
-
clean_up_tokenization_spaces=False
|
87 |
-
)[0]
|
88 |
|
89 |
# Cleanup
|
90 |
-
del
|
91 |
gc.collect()
|
92 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
93 |
|
94 |
-
return
|
95 |
|
96 |
except Exception as e:
|
97 |
-
logger.error(f"Error generating response: {e}")
|
98 |
return "I apologize, but I encountered an error. Please try again."
|
99 |
|
100 |
-
def
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
if health_context:
|
107 |
-
messages.append({
|
108 |
-
"role": "system",
|
109 |
-
"content": [{"type": "text", "text": f"Health Context:\n{health_context}"}]
|
110 |
-
})
|
111 |
-
|
112 |
-
# Add conversation history
|
113 |
if history:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"role": "assistant",
|
122 |
-
"content": [{"type": "text", "text": assistant_msg}]
|
123 |
-
}
|
124 |
])
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
"
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
return messages
|
133 |
|
134 |
def _get_health_context(self) -> str:
|
135 |
context_parts = []
|
@@ -180,7 +195,15 @@ class HealthAssistant:
|
|
180 |
|
181 |
class GradioInterface:
|
182 |
def __init__(self):
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
def chat_response(self, message: str, history: List) -> tuple:
|
186 |
if not message.strip():
|
@@ -211,7 +234,6 @@ class GradioInterface:
|
|
211 |
gr.Markdown("# π₯ AI Health Assistant")
|
212 |
|
213 |
with gr.Tabs():
|
214 |
-
# Chat Interface
|
215 |
with gr.Tab("π¬ Health Chat"):
|
216 |
chatbot = gr.Chatbot(
|
217 |
height=450,
|
@@ -227,7 +249,6 @@ class GradioInterface:
|
|
227 |
send_btn = gr.Button("Send", scale=1)
|
228 |
clear_btn = gr.Button("Clear Chat")
|
229 |
|
230 |
-
# Health Metrics
|
231 |
with gr.Tab("π Health Metrics"):
|
232 |
with gr.Row():
|
233 |
weight_input = gr.Number(label="Weight (kg)")
|
@@ -236,7 +257,6 @@ class GradioInterface:
|
|
236 |
metrics_btn = gr.Button("Save Metrics")
|
237 |
metrics_status = gr.Markdown()
|
238 |
|
239 |
-
# Medication Manager
|
240 |
with gr.Tab("π Medication Manager"):
|
241 |
with gr.Row():
|
242 |
med_name = gr.Textbox(label="Medication Name")
|
@@ -246,7 +266,6 @@ class GradioInterface:
|
|
246 |
med_btn = gr.Button("Add Medication")
|
247 |
med_status = gr.Markdown()
|
248 |
|
249 |
-
# Event handlers
|
250 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
251 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
252 |
clear_btn.click(lambda: [], None, chatbot)
|
@@ -267,8 +286,10 @@ class GradioInterface:
|
|
267 |
|
268 |
def main():
|
269 |
try:
|
|
|
270 |
interface = GradioInterface()
|
271 |
demo = interface.create_interface()
|
|
|
272 |
demo.launch(
|
273 |
share=False,
|
274 |
server_name="0.0.0.0",
|
@@ -277,6 +298,7 @@ def main():
|
|
277 |
)
|
278 |
except Exception as e:
|
279 |
logger.error(f"Error starting application: {e}")
|
|
|
280 |
|
281 |
if __name__ == "__main__":
|
282 |
main()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import transformers
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import logging
|
6 |
from typing import List, Dict
|
7 |
import gc
|
8 |
import os
|
9 |
|
10 |
+
# Setup logging with more detail
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO,
|
13 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
14 |
+
)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
+
# Set environment variables for better stability
|
18 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
+
transformers.logging.set_verbosity_info()
|
20 |
+
|
21 |
class HealthAssistant:
|
22 |
+
def __init__(self, use_smaller_model=True):
|
23 |
+
# Use a smaller model for testing/CPU
|
24 |
+
if use_smaller_model:
|
25 |
+
self.model_name = "facebook/opt-125m" # Much smaller model for testing
|
26 |
+
else:
|
27 |
+
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
28 |
+
|
29 |
self.model = None
|
30 |
self.tokenizer = None
|
|
|
31 |
self.metrics = []
|
32 |
self.medications = []
|
33 |
self.initialize_model()
|
34 |
|
35 |
def initialize_model(self):
|
36 |
try:
|
37 |
+
logger.info(f"Starting model initialization: {self.model_name}")
|
38 |
+
|
39 |
+
# First try loading tokenizer
|
40 |
+
logger.info("Loading tokenizer...")
|
41 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
42 |
self.model_name,
|
|
|
|
|
43 |
trust_remote_code=True
|
44 |
)
|
45 |
+
if self.tokenizer is None:
|
46 |
+
raise ValueError("Failed to load tokenizer")
|
47 |
+
logger.info("Tokenizer loaded successfully")
|
48 |
+
|
49 |
+
# Then load the model
|
50 |
+
logger.info("Loading model...")
|
51 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
self.model_name,
|
53 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
54 |
+
low_cpu_mem_usage=True,
|
55 |
+
trust_remote_code=True
|
56 |
+
)
|
57 |
+
if self.model is None:
|
58 |
+
raise ValueError("Failed to load model")
|
59 |
+
|
60 |
+
# Move model to CPU explicitly
|
61 |
+
self.model = self.model.to("cpu")
|
62 |
+
logger.info("Model loaded successfully and moved to CPU")
|
63 |
|
64 |
+
# Set padding token if needed
|
65 |
+
if self.tokenizer.pad_token is None:
|
66 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
67 |
+
logger.info("Set padding token")
|
68 |
+
|
69 |
+
return True
|
70 |
+
|
71 |
except Exception as e:
|
72 |
+
logger.error(f"Error in model initialization: {str(e)}")
|
73 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
74 |
+
|
75 |
+
def is_initialized(self):
|
76 |
+
"""Check if model is properly initialized"""
|
77 |
+
return (self.model is not None and
|
78 |
+
self.tokenizer is not None and
|
79 |
+
hasattr(self.model, 'generate') and
|
80 |
+
hasattr(self.tokenizer, 'encode'))
|
81 |
|
82 |
def generate_response(self, message: str, history: List = None) -> str:
|
83 |
try:
|
84 |
+
if not self.is_initialized():
|
85 |
+
raise RuntimeError("Model not properly initialized")
|
86 |
+
|
87 |
+
# Prepare prompt
|
88 |
+
prompt = self._prepare_prompt(message, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Tokenize
|
91 |
+
inputs = self.tokenizer(
|
92 |
+
prompt,
|
93 |
+
return_tensors="pt",
|
|
|
94 |
padding=True,
|
95 |
+
truncation=True,
|
96 |
+
max_length=512
|
97 |
+
).to("cpu") # Ensure CPU tensor
|
|
|
|
|
98 |
|
99 |
+
# Generate
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = self.model.generate(
|
102 |
+
inputs["input_ids"],
|
103 |
+
max_new_tokens=128,
|
104 |
+
num_beams=1,
|
105 |
+
do_sample=True,
|
106 |
+
temperature=0.7,
|
107 |
+
top_p=0.9,
|
108 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
109 |
+
eos_token_id=self.tokenizer.eos_token_id
|
110 |
+
)
|
111 |
|
112 |
+
# Decode
|
113 |
+
response = self.tokenizer.decode(
|
114 |
+
outputs[0][inputs["input_ids"].shape[1]:],
|
115 |
+
skip_special_tokens=True
|
116 |
+
)
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Cleanup
|
119 |
+
del outputs, inputs
|
120 |
gc.collect()
|
|
|
121 |
|
122 |
+
return response.strip()
|
123 |
|
124 |
except Exception as e:
|
125 |
+
logger.error(f"Error generating response: {str(e)}")
|
126 |
return "I apologize, but I encountered an error. Please try again."
|
127 |
|
128 |
+
def _prepare_prompt(self, message: str, history: List = None) -> str:
|
129 |
+
parts = [
|
130 |
+
"You are a helpful healthcare assistant. Provide accurate and helpful information.",
|
131 |
+
self._get_health_context() or "No health data available yet."
|
132 |
+
]
|
133 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if history:
|
135 |
+
parts.append("Previous conversation:")
|
136 |
+
for user_msg, bot_msg in history[-3:]:
|
137 |
+
parts.extend([
|
138 |
+
f"User: {user_msg}",
|
139 |
+
f"Assistant: {bot_msg}"
|
|
|
|
|
|
|
|
|
|
|
140 |
])
|
141 |
+
|
142 |
+
parts.extend([
|
143 |
+
f"User: {message}",
|
144 |
+
"Assistant:"
|
145 |
+
])
|
146 |
+
|
147 |
+
return "\n\n".join(parts)
|
|
|
148 |
|
149 |
def _get_health_context(self) -> str:
|
150 |
context_parts = []
|
|
|
195 |
|
196 |
class GradioInterface:
|
197 |
def __init__(self):
|
198 |
+
try:
|
199 |
+
logger.info("Initializing Health Assistant...")
|
200 |
+
self.assistant = HealthAssistant(use_smaller_model=True) # Use smaller model for testing
|
201 |
+
if not self.assistant.is_initialized():
|
202 |
+
raise RuntimeError("Health Assistant failed to initialize properly")
|
203 |
+
logger.info("Health Assistant initialized successfully")
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Failed to initialize Health Assistant: {e}")
|
206 |
+
raise
|
207 |
|
208 |
def chat_response(self, message: str, history: List) -> tuple:
|
209 |
if not message.strip():
|
|
|
234 |
gr.Markdown("# π₯ AI Health Assistant")
|
235 |
|
236 |
with gr.Tabs():
|
|
|
237 |
with gr.Tab("π¬ Health Chat"):
|
238 |
chatbot = gr.Chatbot(
|
239 |
height=450,
|
|
|
249 |
send_btn = gr.Button("Send", scale=1)
|
250 |
clear_btn = gr.Button("Clear Chat")
|
251 |
|
|
|
252 |
with gr.Tab("π Health Metrics"):
|
253 |
with gr.Row():
|
254 |
weight_input = gr.Number(label="Weight (kg)")
|
|
|
257 |
metrics_btn = gr.Button("Save Metrics")
|
258 |
metrics_status = gr.Markdown()
|
259 |
|
|
|
260 |
with gr.Tab("π Medication Manager"):
|
261 |
with gr.Row():
|
262 |
med_name = gr.Textbox(label="Medication Name")
|
|
|
266 |
med_btn = gr.Button("Add Medication")
|
267 |
med_status = gr.Markdown()
|
268 |
|
|
|
269 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
270 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
271 |
clear_btn.click(lambda: [], None, chatbot)
|
|
|
286 |
|
287 |
def main():
|
288 |
try:
|
289 |
+
logger.info("Starting application...")
|
290 |
interface = GradioInterface()
|
291 |
demo = interface.create_interface()
|
292 |
+
logger.info("Launching Gradio interface...")
|
293 |
demo.launch(
|
294 |
share=False,
|
295 |
server_name="0.0.0.0",
|
|
|
298 |
)
|
299 |
except Exception as e:
|
300 |
logger.error(f"Error starting application: {e}")
|
301 |
+
raise
|
302 |
|
303 |
if __name__ == "__main__":
|
304 |
main()
|