Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,189 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
-
|
|
|
|
|
|
|
5 |
import os
|
6 |
-
from typing import Optional, Dict, List, Any
|
7 |
-
import json
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
BACKUP_MODEL = "google/flan-t5-base" # Smaller model as backup
|
12 |
-
|
13 |
-
class LLMHandler:
|
14 |
def __init__(self):
|
15 |
-
self.
|
16 |
-
self.
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
try:
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
)
|
|
|
|
|
24 |
except Exception as e:
|
25 |
-
print(f"
|
26 |
-
|
27 |
-
return InferenceClient(model=BACKUP_MODEL)
|
28 |
-
except:
|
29 |
-
return None
|
30 |
|
31 |
-
def
|
32 |
-
if not self.has_llm:
|
33 |
-
return "Service is running in basic mode. Using template responses."
|
34 |
-
|
35 |
try:
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
prompt,
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return response
|
46 |
except Exception as e:
|
47 |
-
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
-
class
|
51 |
def __init__(self):
|
52 |
-
self.metrics
|
53 |
-
self.medications
|
54 |
|
55 |
-
def add_metrics(self, metrics: Dict
|
56 |
try:
|
57 |
self.metrics.append({
|
58 |
'Date': datetime.now().strftime('%Y-%m-%d'),
|
59 |
**metrics
|
60 |
})
|
61 |
return True
|
62 |
-
except
|
63 |
return False
|
64 |
|
65 |
-
def add_medication(self, medication: Dict
|
66 |
try:
|
67 |
self.medications.append(medication)
|
68 |
return True
|
69 |
-
except
|
70 |
return False
|
71 |
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
def get_medications_df(self) -> pd.DataFrame:
|
76 |
-
return pd.DataFrame(self.medications)
|
77 |
-
|
78 |
-
def get_latest_metrics(self) -> Optional[Dict[str, Any]]:
|
79 |
-
return self.metrics[-1] if self.metrics else None
|
80 |
-
|
81 |
-
def format_health_context(self) -> str:
|
82 |
-
context = []
|
83 |
|
84 |
-
# Add metrics context
|
85 |
if self.metrics:
|
86 |
-
latest = self.
|
87 |
-
|
88 |
-
-
|
89 |
-
-
|
90 |
-
-
|
91 |
-
- Sleep: {latest['Sleep']} hours""")
|
92 |
|
93 |
-
# Add trends
|
94 |
-
if len(self.metrics) > 1:
|
95 |
-
df = self.get_metrics_df()
|
96 |
-
context.append("\nTrends:")
|
97 |
-
for column in ['Weight', 'Steps', 'Sleep']:
|
98 |
-
trend = df[column].diff().iloc[-1]
|
99 |
-
if not pd.isna(trend):
|
100 |
-
direction = "increased" if trend > 0 else "decreased"
|
101 |
-
context.append(f"- {column} has {direction} by {abs(trend):.1f}")
|
102 |
-
|
103 |
-
# Add medications context
|
104 |
if self.medications:
|
105 |
-
|
106 |
for med in self.medications:
|
107 |
-
|
108 |
if med['Notes']:
|
109 |
-
|
|
|
110 |
|
111 |
-
return "\n".join(
|
112 |
|
113 |
-
#
|
114 |
class HealthAssistant:
|
115 |
def __init__(self):
|
116 |
-
self.
|
117 |
-
self.
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
4. Recommended Actions
|
131 |
-
5. Urgency Level
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
return self.llm.get_response(prompt, temperature=0.3)
|
136 |
|
137 |
-
def
|
138 |
-
|
139 |
-
|
140 |
|
141 |
# Get health context
|
142 |
-
|
143 |
|
144 |
-
#
|
145 |
-
|
146 |
-
f"Human: {h['content']}" if h['role'] == 'user' else f"Assistant: {h['content']}"
|
147 |
-
for h in history[-4:] if h['content']
|
148 |
-
])
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
Provide a helpful response, referencing their health data if relevant. Include appropriate medical disclaimers."""
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
#
|
164 |
class HealthAssistantUI:
|
165 |
def __init__(self):
|
166 |
self.assistant = HealthAssistant()
|
167 |
|
168 |
-
def user_chat(self, message: str, history: List
|
169 |
if message.strip() == "":
|
170 |
return "", history
|
171 |
|
172 |
-
bot_message = self.assistant.
|
173 |
history.append({"role": "user", "content": message})
|
174 |
history.append({"role": "assistant", "content": bot_message})
|
175 |
return "", history
|
@@ -179,8 +193,9 @@ class HealthAssistantUI:
|
|
179 |
return "β οΈ Please fill in all metrics.", None
|
180 |
|
181 |
metrics = {'Weight': weight, 'Steps': steps, 'Sleep': sleep}
|
182 |
-
if self.assistant.
|
183 |
-
|
|
|
184 |
return "β Error saving metrics", None
|
185 |
|
186 |
def save_medication(self, name: str, dosage: str, time: str, notes: str) -> tuple:
|
@@ -193,18 +208,14 @@ class HealthAssistantUI:
|
|
193 |
'Time': time,
|
194 |
'Notes': notes or ''
|
195 |
}
|
196 |
-
if self.assistant.
|
197 |
-
|
|
|
198 |
return "β Error adding medication", None
|
199 |
|
200 |
def create_interface(self):
|
201 |
with gr.Blocks(title="Virtual Health Assistant", theme=gr.themes.Soft()) as demo:
|
202 |
-
gr.Markdown(
|
203 |
-
"""
|
204 |
-
# π₯ Virtual Health Assistant
|
205 |
-
Your AI-powered health companion. Get personalized health guidance based on your data.
|
206 |
-
"""
|
207 |
-
)
|
208 |
|
209 |
with gr.Tabs():
|
210 |
# Chat Interface
|
@@ -212,36 +223,29 @@ class HealthAssistantUI:
|
|
212 |
with gr.Row():
|
213 |
with gr.Column(scale=3):
|
214 |
chatbot = gr.Chatbot(
|
215 |
-
type='messages',
|
216 |
show_label=False,
|
217 |
height=450,
|
218 |
container=True,
|
219 |
-
bubble_full_width=False
|
220 |
)
|
221 |
with gr.Column(scale=1):
|
|
|
222 |
context_display = gr.Markdown(
|
223 |
-
value=self.assistant.
|
224 |
-
"*No health data available yet.*"
|
225 |
)
|
226 |
|
227 |
with gr.Row():
|
228 |
msg = gr.Textbox(
|
229 |
-
placeholder="Type your health question... (Press Enter
|
230 |
lines=2,
|
231 |
max_lines=2,
|
232 |
show_label=False,
|
233 |
container=False,
|
234 |
scale=9
|
235 |
)
|
236 |
-
send_btn = gr.Button("Send", scale=1
|
237 |
|
238 |
clear_btn = gr.Button("Clear Chat")
|
239 |
-
|
240 |
-
# Event handlers
|
241 |
-
msg.submit(self.user_chat, [msg, chatbot], [msg, chatbot])
|
242 |
-
send_btn.click(self.user_chat, [msg, chatbot], [msg, chatbot])
|
243 |
-
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
244 |
-
|
245 |
# Symptom Checker
|
246 |
with gr.Tab("π Symptom Checker"):
|
247 |
symptoms_input = gr.Textbox(
|
@@ -251,71 +255,69 @@ class HealthAssistantUI:
|
|
251 |
)
|
252 |
analyze_btn = gr.Button("Analyze Symptoms", variant="primary")
|
253 |
symptoms_output = gr.Markdown()
|
254 |
-
|
255 |
-
analyze_btn.click(
|
256 |
-
self.assistant.analyze_symptoms,
|
257 |
-
inputs=[symptoms_input],
|
258 |
-
outputs=[symptoms_output]
|
259 |
-
)
|
260 |
-
|
261 |
# Health Metrics
|
262 |
with gr.Tab("π Health Metrics"):
|
263 |
with gr.Row():
|
264 |
with gr.Column():
|
265 |
-
weight_input = gr.Number(label="Weight (kg)"
|
266 |
-
steps_input = gr.Number(label="Steps"
|
267 |
-
sleep_input = gr.Number(label="Hours Slept"
|
268 |
metrics_btn = gr.Button("Save Metrics", variant="primary")
|
269 |
metrics_status = gr.Markdown()
|
270 |
|
271 |
with gr.Column():
|
272 |
metrics_display = gr.Dataframe(
|
273 |
-
headers=["Date", "Weight", "Steps", "Sleep"]
|
274 |
-
label="Your Health Metrics",
|
275 |
-
wrap=True
|
276 |
)
|
277 |
-
|
278 |
-
metrics_btn.click(
|
279 |
-
self.save_metrics,
|
280 |
-
inputs=[weight_input, steps_input, sleep_input],
|
281 |
-
outputs=[metrics_status, metrics_display]
|
282 |
-
)
|
283 |
-
|
284 |
# Medication Manager
|
285 |
with gr.Tab("π Medication Manager"):
|
286 |
with gr.Row():
|
287 |
with gr.Column():
|
288 |
med_name = gr.Textbox(label="Medication Name")
|
289 |
med_dosage = gr.Textbox(label="Dosage")
|
290 |
-
med_time = gr.Textbox(label="Time
|
291 |
med_notes = gr.Textbox(label="Notes (optional)")
|
292 |
med_btn = gr.Button("Add Medication", variant="primary")
|
293 |
med_status = gr.Markdown()
|
294 |
|
295 |
with gr.Column():
|
296 |
meds_display = gr.Dataframe(
|
297 |
-
headers=["Medication", "Dosage", "Time", "Notes"]
|
298 |
-
label="Your Medications",
|
299 |
-
wrap=True
|
300 |
)
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
gr.Markdown(
|
309 |
-
"""
|
310 |
-
### β οΈ Medical Disclaimer
|
311 |
This AI assistant provides general health information only.
|
312 |
-
Always consult healthcare professionals for medical advice.
|
313 |
-
"""
|
314 |
)
|
315 |
|
316 |
return demo
|
317 |
|
318 |
-
# ====================== MAIN APPLICATION ======================
|
319 |
def main():
|
320 |
ui = HealthAssistantUI()
|
321 |
demo = ui.create_interface()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import gc
|
7 |
+
from typing import List, Dict, Optional
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
+
# ================== Model Configuration ==================
|
11 |
+
class ModelHandler:
|
|
|
|
|
|
|
12 |
def __init__(self):
|
13 |
+
self.model_name = "google/flan-t5-large"
|
14 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
self.tokenizer = None
|
16 |
+
self.model = None
|
17 |
+
self.initialize_model()
|
18 |
+
|
19 |
+
def initialize_model(self):
|
20 |
try:
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
22 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
23 |
+
self.model_name,
|
24 |
+
torch_dtype=torch.float32,
|
25 |
+
low_cpu_mem_usage=True
|
26 |
)
|
27 |
+
self.model.to(self.device)
|
28 |
+
return True
|
29 |
except Exception as e:
|
30 |
+
print(f"Error initializing model: {str(e)}")
|
31 |
+
return False
|
|
|
|
|
|
|
32 |
|
33 |
+
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
|
|
|
|
|
|
34 |
try:
|
35 |
+
# Clear memory
|
36 |
+
gc.collect()
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
torch.cuda.empty_cache()
|
39 |
+
|
40 |
+
# Prepare input
|
41 |
+
inputs = self.tokenizer(
|
42 |
prompt,
|
43 |
+
return_tensors="pt",
|
44 |
+
truncation=True,
|
45 |
+
max_length=512
|
46 |
+
).to(self.device)
|
47 |
+
|
48 |
+
# Generate response
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = self.model.generate(
|
51 |
+
inputs.input_ids,
|
52 |
+
max_length=max_length,
|
53 |
+
num_beams=2,
|
54 |
+
temperature=0.7,
|
55 |
+
no_repeat_ngram_size=3,
|
56 |
+
length_penalty=1.0
|
57 |
+
)
|
58 |
+
|
59 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
# Clear memory
|
62 |
+
del outputs, inputs
|
63 |
+
gc.collect()
|
64 |
+
if torch.cuda.is_available():
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
|
67 |
return response
|
68 |
except Exception as e:
|
69 |
+
return f"Error generating response: {str(e)}"
|
70 |
+
|
71 |
+
def clear_memory(self):
|
72 |
+
gc.collect()
|
73 |
+
if torch.cuda.is_available():
|
74 |
+
torch.cuda.empty_cache()
|
75 |
|
76 |
+
# ================== Data Management ==================
|
77 |
+
class HealthData:
|
78 |
def __init__(self):
|
79 |
+
self.metrics = []
|
80 |
+
self.medications = []
|
81 |
|
82 |
+
def add_metrics(self, metrics: Dict) -> bool:
|
83 |
try:
|
84 |
self.metrics.append({
|
85 |
'Date': datetime.now().strftime('%Y-%m-%d'),
|
86 |
**metrics
|
87 |
})
|
88 |
return True
|
89 |
+
except:
|
90 |
return False
|
91 |
|
92 |
+
def add_medication(self, medication: Dict) -> bool:
|
93 |
try:
|
94 |
self.medications.append(medication)
|
95 |
return True
|
96 |
+
except:
|
97 |
return False
|
98 |
|
99 |
+
def get_health_context(self) -> str:
|
100 |
+
context_parts = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
102 |
if self.metrics:
|
103 |
+
latest = self.metrics[-1]
|
104 |
+
context_parts.append(f"Recent Health Metrics (Date: {latest['Date']}):")
|
105 |
+
context_parts.append(f"- Weight: {latest['Weight']} kg")
|
106 |
+
context_parts.append(f"- Steps: {latest['Steps']}")
|
107 |
+
context_parts.append(f"- Sleep: {latest['Sleep']} hours")
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
if self.medications:
|
110 |
+
context_parts.append("\nCurrent Medications:")
|
111 |
for med in self.medications:
|
112 |
+
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}"
|
113 |
if med['Notes']:
|
114 |
+
med_info += f" | Note: {med['Notes']}"
|
115 |
+
context_parts.append(med_info)
|
116 |
|
117 |
+
return "\n".join(context_parts) if context_parts else "No health data available."
|
118 |
|
119 |
+
# ================== Health Assistant ==================
|
120 |
class HealthAssistant:
|
121 |
def __init__(self):
|
122 |
+
self.model = ModelHandler()
|
123 |
+
self.data = HealthData()
|
124 |
+
self.request_count = 0
|
125 |
+
|
126 |
+
def _create_prompt(self, message: str, context: str = "", history: List = None) -> str:
|
127 |
+
prompt_parts = [
|
128 |
+
"You are a helpful healthcare assistant. Provide accurate and helpful information.",
|
129 |
+
f"User Health Information:\n{context}" if context else "",
|
130 |
+
"Previous conversation:",
|
131 |
+
]
|
132 |
|
133 |
+
if history:
|
134 |
+
for h in history[-3:]: # Last 3 messages for context
|
135 |
+
prompt_parts.append(f"User: {h['content']}" if h['role'] == 'user'
|
136 |
+
else f"Assistant: {h['content']}")
|
|
|
|
|
137 |
|
138 |
+
prompt_parts.append(f"Current question: {message}")
|
139 |
+
return "\n\n".join(filter(None, prompt_parts))
|
|
|
140 |
|
141 |
+
def get_response(self, message: str, history: List = None) -> str:
|
142 |
+
# Increment request counter
|
143 |
+
self.request_count += 1
|
144 |
|
145 |
# Get health context
|
146 |
+
context = self.data.get_health_context()
|
147 |
|
148 |
+
# Create prompt
|
149 |
+
prompt = self._create_prompt(message, context, history)
|
|
|
|
|
|
|
150 |
|
151 |
+
# Get response
|
152 |
+
response = self.model.generate_response(prompt)
|
153 |
+
|
154 |
+
# Periodic memory cleanup
|
155 |
+
if self.request_count % 5 == 0:
|
156 |
+
self.model.clear_memory()
|
157 |
+
|
158 |
+
return response
|
|
|
|
|
159 |
|
160 |
+
def analyze_symptoms(self, symptoms: str) -> str:
|
161 |
+
if not symptoms:
|
162 |
+
return "Please describe your symptoms."
|
163 |
+
|
164 |
+
prompt = (
|
165 |
+
"Analyze these symptoms as a medical professional:\n"
|
166 |
+
f"{symptoms}\n\n"
|
167 |
+
"Provide analysis with:\n"
|
168 |
+
"1. Risk Level\n"
|
169 |
+
"2. Key Symptoms\n"
|
170 |
+
"3. Possible Causes\n"
|
171 |
+
"4. Recommended Actions\n"
|
172 |
+
"5. When to Seek Medical Care"
|
173 |
+
)
|
174 |
+
|
175 |
+
return self.model.generate_response(prompt)
|
176 |
|
177 |
+
# ================== Gradio Interface ==================
|
178 |
class HealthAssistantUI:
|
179 |
def __init__(self):
|
180 |
self.assistant = HealthAssistant()
|
181 |
|
182 |
+
def user_chat(self, message: str, history: List) -> tuple:
|
183 |
if message.strip() == "":
|
184 |
return "", history
|
185 |
|
186 |
+
bot_message = self.assistant.get_response(message, history)
|
187 |
history.append({"role": "user", "content": message})
|
188 |
history.append({"role": "assistant", "content": bot_message})
|
189 |
return "", history
|
|
|
193 |
return "β οΈ Please fill in all metrics.", None
|
194 |
|
195 |
metrics = {'Weight': weight, 'Steps': steps, 'Sleep': sleep}
|
196 |
+
if self.assistant.data.add_metrics(metrics):
|
197 |
+
df = pd.DataFrame(self.assistant.data.metrics)
|
198 |
+
return "β
Metrics saved successfully!", df
|
199 |
return "β Error saving metrics", None
|
200 |
|
201 |
def save_medication(self, name: str, dosage: str, time: str, notes: str) -> tuple:
|
|
|
208 |
'Time': time,
|
209 |
'Notes': notes or ''
|
210 |
}
|
211 |
+
if self.assistant.data.add_medication(medication):
|
212 |
+
df = pd.DataFrame(self.assistant.data.medications)
|
213 |
+
return "β
Medication added successfully!", df
|
214 |
return "β Error adding medication", None
|
215 |
|
216 |
def create_interface(self):
|
217 |
with gr.Blocks(title="Virtual Health Assistant", theme=gr.themes.Soft()) as demo:
|
218 |
+
gr.Markdown("# π₯ Virtual Health Assistant")
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
with gr.Tabs():
|
221 |
# Chat Interface
|
|
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=3):
|
225 |
chatbot = gr.Chatbot(
|
|
|
226 |
show_label=False,
|
227 |
height=450,
|
228 |
container=True,
|
|
|
229 |
)
|
230 |
with gr.Column(scale=1):
|
231 |
+
gr.Markdown("### Your Health Info")
|
232 |
context_display = gr.Markdown(
|
233 |
+
value=self.assistant.data.get_health_context()
|
|
|
234 |
)
|
235 |
|
236 |
with gr.Row():
|
237 |
msg = gr.Textbox(
|
238 |
+
placeholder="Type your health question... (Press Enter)",
|
239 |
lines=2,
|
240 |
max_lines=2,
|
241 |
show_label=False,
|
242 |
container=False,
|
243 |
scale=9
|
244 |
)
|
245 |
+
send_btn = gr.Button("Send", scale=1)
|
246 |
|
247 |
clear_btn = gr.Button("Clear Chat")
|
248 |
+
|
|
|
|
|
|
|
|
|
|
|
249 |
# Symptom Checker
|
250 |
with gr.Tab("π Symptom Checker"):
|
251 |
symptoms_input = gr.Textbox(
|
|
|
255 |
)
|
256 |
analyze_btn = gr.Button("Analyze Symptoms", variant="primary")
|
257 |
symptoms_output = gr.Markdown()
|
258 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
# Health Metrics
|
260 |
with gr.Tab("π Health Metrics"):
|
261 |
with gr.Row():
|
262 |
with gr.Column():
|
263 |
+
weight_input = gr.Number(label="Weight (kg)")
|
264 |
+
steps_input = gr.Number(label="Steps")
|
265 |
+
sleep_input = gr.Number(label="Hours Slept")
|
266 |
metrics_btn = gr.Button("Save Metrics", variant="primary")
|
267 |
metrics_status = gr.Markdown()
|
268 |
|
269 |
with gr.Column():
|
270 |
metrics_display = gr.Dataframe(
|
271 |
+
headers=["Date", "Weight", "Steps", "Sleep"]
|
|
|
|
|
272 |
)
|
273 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
# Medication Manager
|
275 |
with gr.Tab("π Medication Manager"):
|
276 |
with gr.Row():
|
277 |
with gr.Column():
|
278 |
med_name = gr.Textbox(label="Medication Name")
|
279 |
med_dosage = gr.Textbox(label="Dosage")
|
280 |
+
med_time = gr.Textbox(label="Time")
|
281 |
med_notes = gr.Textbox(label="Notes (optional)")
|
282 |
med_btn = gr.Button("Add Medication", variant="primary")
|
283 |
med_status = gr.Markdown()
|
284 |
|
285 |
with gr.Column():
|
286 |
meds_display = gr.Dataframe(
|
287 |
+
headers=["Medication", "Dosage", "Time", "Notes"]
|
|
|
|
|
288 |
)
|
289 |
+
|
290 |
+
# Event handlers
|
291 |
+
msg.submit(self.user_chat, [msg, chatbot], [msg, chatbot])
|
292 |
+
send_btn.click(self.user_chat, [msg, chatbot], [msg, chatbot])
|
293 |
+
clear_btn.click(lambda: None, None, chatbot)
|
294 |
+
|
295 |
+
analyze_btn.click(
|
296 |
+
self.assistant.analyze_symptoms,
|
297 |
+
inputs=[symptoms_input],
|
298 |
+
outputs=[symptoms_output]
|
299 |
+
)
|
300 |
+
|
301 |
+
metrics_btn.click(
|
302 |
+
self.save_metrics,
|
303 |
+
inputs=[weight_input, steps_input, sleep_input],
|
304 |
+
outputs=[metrics_status, metrics_display]
|
305 |
+
)
|
306 |
+
|
307 |
+
med_btn.click(
|
308 |
+
self.save_medication,
|
309 |
+
inputs=[med_name, med_dosage, med_time, med_notes],
|
310 |
+
outputs=[med_status, meds_display]
|
311 |
+
)
|
312 |
|
313 |
gr.Markdown(
|
314 |
+
"""### β οΈ Medical Disclaimer
|
|
|
315 |
This AI assistant provides general health information only.
|
316 |
+
Always consult healthcare professionals for medical advice."""
|
|
|
317 |
)
|
318 |
|
319 |
return demo
|
320 |
|
|
|
321 |
def main():
|
322 |
ui = HealthAssistantUI()
|
323 |
demo = ui.create_interface()
|