|
import os |
|
from fastapi import FastAPI, File, UploadFile |
|
from pydantic import BaseModel |
|
from typing import List |
|
import torch |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
from byaldi import RAGMultiModalModel |
|
from PIL import Image |
|
import io |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
RAG_MODEL = "vidore/colpali" |
|
QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct" |
|
QWN_PROCESSOR = "Qwen/Qwen2-VL-2B-Instruct" |
|
|
|
|
|
RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL) |
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
QWN_MODEL, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto", |
|
trust_remote_code=True |
|
).cuda().eval() |
|
|
|
processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True) |
|
|
|
|
|
class DocumentRequest(BaseModel): |
|
text_query: str |
|
|
|
|
|
def document_rag(text_query, image): |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": image, |
|
}, |
|
{"type": "text", "text": text_query}, |
|
], |
|
} |
|
] |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
generated_ids = model.generate(**inputs, max_new_tokens=50) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
return output_text[0] |
|
|
|
|
|
@app.post("/process_document") |
|
async def process_document(request: DocumentRequest, file: UploadFile = File(...)): |
|
|
|
contents = await file.read() |
|
image = Image.open(io.BytesIO(contents)) |
|
|
|
|
|
result = document_rag(request.text_query, image) |
|
|
|
return {"result": result} |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |