Delete app.py
Browse files
app.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException, Header
|
4 |
-
from pydantic import BaseModel
|
5 |
-
from typing import List, Optional
|
6 |
-
import torch
|
7 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
8 |
-
from qwen_vl_utils import process_vision_info
|
9 |
-
from byaldi import RAGMultiModalModel
|
10 |
-
from PIL import Image
|
11 |
-
import io
|
12 |
-
|
13 |
-
# Load environment variables
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
# Access environment variables
|
17 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
-
RAG_MODEL = os.getenv("RAG_MODEL", "vidore/colpali")
|
19 |
-
QWN_MODEL = os.getenv("QWN_MODEL", "Qwen/Qwen2-VL-7B-Instruct")
|
20 |
-
QWN_PROCESSOR = os.getenv("QWN_PROCESSOR", "Qwen/Qwen2-VL-2B-Instruct")
|
21 |
-
|
22 |
-
if not HF_TOKEN:
|
23 |
-
raise ValueError("HF_TOKEN not found in .env file")
|
24 |
-
|
25 |
-
# Initialize FastAPI app
|
26 |
-
app = FastAPI()
|
27 |
-
|
28 |
-
# Load models and processors
|
29 |
-
RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL, use_auth_token=HF_TOKEN)
|
30 |
-
|
31 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
32 |
-
QWN_MODEL,
|
33 |
-
torch_dtype=torch.bfloat16,
|
34 |
-
attn_implementation="flash_attention_2",
|
35 |
-
device_map="auto",
|
36 |
-
trust_remote_code=True,
|
37 |
-
use_auth_token=HF_TOKEN
|
38 |
-
).cuda().eval()
|
39 |
-
|
40 |
-
processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
41 |
-
|
42 |
-
# Define request model
|
43 |
-
class DocumentRequest(BaseModel):
|
44 |
-
text_query: str
|
45 |
-
|
46 |
-
# Define processing function
|
47 |
-
def document_rag(text_query, image):
|
48 |
-
messages = [
|
49 |
-
{
|
50 |
-
"role": "user",
|
51 |
-
"content": [
|
52 |
-
{
|
53 |
-
"type": "image",
|
54 |
-
"image": image,
|
55 |
-
},
|
56 |
-
{"type": "text", "text": text_query},
|
57 |
-
],
|
58 |
-
}
|
59 |
-
]
|
60 |
-
text = processor.apply_chat_template(
|
61 |
-
messages, tokenize=False, add_generation_prompt=True
|
62 |
-
)
|
63 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
64 |
-
inputs = processor(
|
65 |
-
text=[text],
|
66 |
-
images=image_inputs,
|
67 |
-
videos=video_inputs,
|
68 |
-
padding=True,
|
69 |
-
return_tensors="pt",
|
70 |
-
)
|
71 |
-
inputs = inputs.to("cuda")
|
72 |
-
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
73 |
-
generated_ids_trimmed = [
|
74 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
75 |
-
]
|
76 |
-
output_text = processor.batch_decode(
|
77 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
78 |
-
)
|
79 |
-
return output_text[0]
|
80 |
-
|
81 |
-
# Define API endpoints
|
82 |
-
@app.post("/process_document")
|
83 |
-
async def process_document(request: DocumentRequest, file: UploadFile = File(...), x_api_key: Optional[str] = Header(None)):
|
84 |
-
# Check API key
|
85 |
-
if x_api_key != HF_TOKEN:
|
86 |
-
raise HTTPException(status_code=403, detail="Invalid API key")
|
87 |
-
|
88 |
-
# Read and process the uploaded file
|
89 |
-
contents = await file.read()
|
90 |
-
image = Image.open(io.BytesIO(contents))
|
91 |
-
|
92 |
-
# Process the document
|
93 |
-
result = document_rag(request.text_query, image)
|
94 |
-
|
95 |
-
return {"result": result}
|
96 |
-
|
97 |
-
if __name__ == "__main__":
|
98 |
-
import uvicorn
|
99 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|