import os from fastapi import FastAPI, File, UploadFile from pydantic import BaseModel from typing import List import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from byaldi import RAGMultiModalModel from PIL import Image import io # Initialize FastAPI app app = FastAPI() # Define model and processor paths RAG_MODEL = "vidore/colpali" QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct" QWN_PROCESSOR = "Qwen/Qwen2-VL-2B-Instruct" # Load models and processors RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL) model = Qwen2VLForConditionalGeneration.from_pretrained( QWN_MODEL, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", trust_remote_code=True ).cuda().eval() processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True) # Define request model class DocumentRequest(BaseModel): text_query: str # Define processing function def document_rag(text_query, image): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": text_query}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=50) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] # Define API endpoints @app.post("/process_document") async def process_document(request: DocumentRequest, file: UploadFile = File(...)): # Read and process the uploaded file contents = await file.read() image = Image.open(io.BytesIO(contents)) # Process the document result = document_rag(request.text_query, image) return {"result": result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)