Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from PIL import Image | |
import torch | |
# Load the model and processor | |
def load_model(): | |
# Load Qwen2-VL-7B on CPU | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
return model, processor | |
model, processor = load_model() | |
# Streamlit Interface | |
st.title("Qwen2-VL-7B Multimodal Demo") | |
st.write("Upload an image and provide a text prompt to see the model's response.") | |
# Image uploader | |
image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
# Text input field | |
text = st.text_input("Enter a text description or query") | |
# If both image and text are provided | |
if image and text: | |
# Load image with PIL | |
img = Image.open(image) | |
st.image(img, caption="Uploaded Image", use_column_width=True) | |
# Prepare inputs for Qwen2-VL | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": img}, | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Prepare for inference | |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt") | |
# Move tensors to CPU | |
inputs = inputs.to("cpu") | |
# Run the model and generate output | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
# Decode the output text | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
# Display the response | |
st.write("Model's response:", generated_text) | |