import streamlit as st import torch from PIL import Image import gc from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.utils.colpali_processing_utils import process_images, process_queries from torch.utils.data import DataLoader # Function to load Colpali model @st.cache_resource def load_colpali_model(): model = ColPali.from_pretrained("vidore/colpaligemma-3b-mix-448-base", torch_dtype=torch.float32, device_map="cpu").eval() model.load_adapter("vidore/colpali") processor = AutoProcessor.from_pretrained("vidore/colpali") return model, processor # Function to load Qwen2-VL model @st.cache_resource def load_qwen_model(): model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") return model, processor # Function to clear GPU memory def clear_memory(): gc.collect() torch.cuda.empty_cache() # Streamlit Interface st.title("OCR and Visual Language Model Demo") st.write("Upload an image for OCR extraction and then ask a question about the image.") # Image uploader image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if image: img = Image.open(image) st.image(img, caption="Uploaded Image", use_column_width=True) # OCR Extraction with Colpali st.write("Extracting text from image...") colpali_model, colpali_processor = load_colpali_model() # Process image for Colpali dataloader = DataLoader( [img], batch_size=1, shuffle=False, collate_fn=lambda x: process_images(colpali_processor, x), ) for batch_doc in dataloader: with torch.no_grad(): batch_doc = {k: v.to('cpu') for k, v in batch_doc.items()} embeddings_doc = colpali_model(**batch_doc) # For simplicity, we'll use a dummy query to extract text dummy_query = "Extract all text from the image" query_dataloader = DataLoader( [dummy_query], batch_size=1, shuffle=False, collate_fn=lambda x: process_queries(colpali_processor, x, Image.new("RGB", (448, 448), (255, 255, 255))), ) for batch_query in query_dataloader: with torch.no_grad(): batch_query = {k: v.to('cpu') for k, v in batch_query.items()} embeddings_query = colpali_model(**batch_query) # In a real scenario, you'd use these embeddings to extract text # For this demo, we'll just show a placeholder text extracted_text = "This is a placeholder for the extracted text. In a real scenario, you would use the embeddings to extract actual text from the image." st.write("Extracted Text:") st.write(extracted_text) # Clear Colpali model from memory del colpali_model, colpali_processor clear_memory() # Text input field for question question = st.text_input("Ask a question about the image and extracted text") if question: st.write("Processing with Qwen2-VL...") qwen_model, qwen_processor = load_qwen_model() # Prepare inputs for Qwen2-VL messages = [ { "role": "user", "content": [ {"type": "image", "image": img}, {"type": "text", "text": f"Extracted text: {extracted_text}\n\nQuestion: {question}"}, ], } ] # Prepare for inference text_input = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, _ = process_vision_info(messages) inputs = qwen_processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt") # Move tensors to CPU inputs = inputs.to("cpu") # Run the model and generate output with torch.no_grad(): generated_ids = qwen_model.generate(**inputs, max_new_tokens=128) # Decode the output text generated_text = qwen_processor.batch_decode(generated_ids, skip_special_tokens=True) # Display the response st.write("Model's response:", generated_text) # Clear Qwen model from memory del qwen_model, qwen_processor clear_memory()