import streamlit as st import torch import torchvision from torchvision import transforms from PIL import Image import io # Define the function to load the model def load_model(model_path, device): weights = torchvision.models.DenseNet201_Weights.DEFAULT # best available weight model = torchvision.models.densenet201(weights=weights).to(device) model.classifier = torch.nn.Sequential( torch.nn.Dropout(p=0.2, inplace=True), torch.nn.Linear(in_features=1920, out_features=2, bias=True) ).to(device) model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() return model # Define the function for preprocessing the image def preprocess_image(image): transform = transforms.Compose([ transforms.Resize(64), transforms.ToTensor(), ]) return transform(image) # Define the function for getting predictions def get_prediction(model, image, device): class_names = ['normal','pneumonia'] image = image.unsqueeze(0).to(device) # Add batch dimension and move to device with torch.no_grad(): pred_logits = model(image) pred_prob = torch.softmax(pred_logits, dim=1) pred_label = torch.argmax(pred_prob, dim=1) return class_names[pred_label.item()], pred_prob.max().item() # Streamlit app starts here st.title("Chest X-ray Pneumonia Checking App") uploaded_file = st.file_uploader("Upload an image of a chest x-ray", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Convert the file-like object to bytes, then open it with PIL image_bytes = uploaded_file.getvalue() image = Image.open(io.BytesIO(image_bytes)).convert('RGB') # make it three channel like training set # Display the uploaded image st.image(image, caption='Uploaded Image.', use_column_width=True) # Predict button if st.button('Predict'): # Set device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model model_path = 'densenetxray.pth' # Fixed model path model = load_model(model_path, device) # Preprocess the image and predict preprocessed_image = preprocess_image(image) prediction, probability = get_prediction(model, preprocessed_image, device) # Display the prediction st.write(f"Prediction: {prediction}, Probability: {probability:.3f}")