File size: 4,214 Bytes
ca85e27
e589d46
 
ca85e27
e589d46
 
34e5eed
ebe4bfb
e589d46
 
d953ee7
e915ee6
 
d953ee7
 
e915ee6
7ddd7f1
d953ee7
 
e915ee6
6d31d85
 
 
 
 
 
 
1a53131
6d31d85
1a53131
6d31d85
1a53131
 
 
 
 
 
 
 
 
 
 
e589d46
 
 
 
 
 
 
 
 
 
e915ee6
52eef08
6d31d85
e915ee6
52eef08
 
a5bd6e3
d953ee7
52eef08
33fbc82
d953ee7
 
243f493
 
52eef08
b6ccbe5
6d31d85
e589d46
 
 
5907edf
b38925d
e589d46
6d31d85
 
 
 
ebe4bfb
6d31d85
 
 
 
 
 
 
b38925d
 
a069d53
b38925d
 
 
4b76193
 
6d31d85
 
 
ca85e27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification


description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
description2 = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."

inference_modelpath = "model/checkpoint-128"

def what_happened(text, file_object, option_list):
    if file_object:
        output = "You uploaded a file."
        if len(option_list) > 0:
            output = output + "\nYou selected these options:\n- " + "\n- ".join(option_list)
    else:
        output = "Normally, this demo should analyse the emotions in this text:\n" + text
        if len(option_list) > 0:
            output = output + "\nYou can only select options when uploading a dataset."
    return output

def what_happened1(text):
    output = "Normally, this demo should analyse the emotions in this text:\n" + text
    return output

def what_happened2(file_object, option_list):
    if file_object:
        output1 = "You uploaded a file."
        if len(option_list) > 0:
            output1 = output1 + "\nYou selected these options:\n- " + "\n- ".join(option_list)
    else:
        output1 = "You should upload a file."
    output2 = output3 = output4 = output5 = "This option was not selected."
    if "emotion frequencies" in option_list:
        output2 = "This option was selected."
    if "emotion distribution over time" in option_list:
        output3 = "This option was selected."
    if "peaks" in option_list:
        output4 = "This option was selected."
    if "topics" in option_list:
        output5 = "This option was selected."
    return [output1, output2, output3, output4, output5]

def inference_sentence(text):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad(): # run model
        logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return output
    

iface0 = gr.Interface(
            fn=what_happened,
            inputs=[
                gr.Textbox(
                    label= "Enter a sentence",
                    lines=1,
                    value="Your name"),
                gr.File(
                    label="Or upload a dataset"),
                gr.CheckboxGroup(
                    ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
                    label = "Select options")
                   ],
            outputs="text")

iface_sentence = gr.Interface(
            fn=inference_sentence,
            description = description_sentence,
            inputs = gr.Textbox(
                    label="Enter a sentence",
                    lines=1),
            outputs="text")

iface2 = gr.Interface(
            fn=what_happened2,
            description = description2,
            inputs=[
                gr.File(
                    label="Upload a dataset"),
                gr.CheckboxGroup(
                    ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
                    label = "Select options")
                   ],
            #outputs=["text", "text", "text", "text", "text"])
            outputs = [
                gr.Textbox(label="Output file"),
                gr.Textbox(label="Emotion frequencies"),
                gr.Textbox(label="Emotion distribution over time"),
                gr.Textbox(label="Peaks"),
                gr.Textbox(label="Topics")
            ])

iface = gr.TabbedInterface([iface1, iface2], ["Sentence", "Dataset"])

iface.launch()