File size: 22,733 Bytes
ab937a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f90723
ab937a1
 
 
9f90723
ab937a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eed1c43
 
 
 
 
ab937a1
 
 
 
 
 
ee4947a
 
 
ab937a1
199582b
 
 
99d3569
199582b
a657537
 
 
 
c50fdc0
a657537
199582b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae832b8
efb03fe
 
 
 
 
08fd507
efb03fe
 
 
 
 
 
 
 
 
 
 
 
66f07c2
efb03fe
 
66f07c2
efb03fe
 
 
 
 
8c09604
efb03fe
199582b
823fbc6
199582b
823fbc6
199582b
 
 
749c3f4
199582b
 
 
 
 
7f79a98
199582b
 
7f79a98
199582b
 
7f79a98
199582b
 
7f79a98
199582b
 
 
 
 
 
 
 
 
 
 
823fbc6
ab937a1
199582b
 
 
f291543
199582b
 
 
 
 
f291543
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import gradio as gr
import torch
import numpy as np
import pickle

import pandas as pd
from tqdm import tqdm

import altair as alt
import matplotlib.pyplot as plt
from datetime import date, timedelta

from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification

"""
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
description_dataset = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
inference_modelpath = "model/checkpoint-128"
def inference_sentence(text):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    for text in tqdm([text]):
        inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad(): # run model
        logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return output
def frequencies(preds):
	preds_dict = {"neutral": 0, "anger": 0, "fear": 0, "joy": 0, "love": 0, "sadness": 0}
	for pred in preds:
		preds_dict[pred] = preds_dict[pred] + 1
	bars = list(preds_dict.keys())
	height = list(preds_dict.values())
	x_pos = np.arange(len(bars))
	plt.bar(x_pos, height, color=['lightgrey', 'firebrick', 'rebeccapurple', 'orange', 'palevioletred', 'cornflowerblue'])
	plt.xticks(x_pos, bars)
	return plt
    
def inference_dataset(file_object, option_list):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    data_path = open(file_object.name, 'r')
    df = pd.read_csv(data_path, delimiter='\t', header=0, names=['id', 'text'])
    ids = df["id"].tolist()
    texts = df["text"].tolist()
    preds = []
    for text in tqdm(texts): # progressbar
        inputs = tokenizer(text, return_tensors="pt")
        with torch.no_grad(): # run model
            logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
        prediction = model.config.id2label[predicted_class_id]
        preds.append(prediction)
    predictions_content = list(zip(ids, texts, preds))
    # write predictions to file
    output = "output.txt"
    f = open(output, 'w')
    f.write("id\ttext\tprediction\n")
    for line in predictions_content:
        f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n')
    output1 = output
    output2 = output3 = output4 = output5 = "This option was not selected."
    if "emotion frequencies" in option_list:
        output2 = frequencies(preds)
    else:
        output2 = None
    if "emotion distribution over time" in option_list:
        output3 = "This option was selected."
    if "peaks" in option_list:
        output4 = "This option was selected."
    if "topics" in option_list:
        output5 = "This option was selected."
    return [output1, output2, output3, output4, output5]
iface_sentence = gr.Interface(
            fn=inference_sentence,
            description = description_sentence,
            inputs = gr.Textbox(
                    label="Enter a sentence",
                    lines=1),
            outputs="text")
inputs = [gr.File(
            label="Upload a dataset"),
          gr.CheckboxGroup(
            ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
            label = "Select options")]
outputs = [gr.File(),
           gr.Plot(label="Emotion frequencies"),
           gr.Textbox(label="Emotion distribution over time"),
           gr.Textbox(label="Peaks"),
           gr.Textbox(label="Topics")]
iface_dataset = gr.Interface(
            fn = inference_dataset,
            description = description_dataset,
            inputs=inputs,
            outputs = outputs)
iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"])
iface.queue().launch()
"""

inference_modelpath = "model/checkpoint-128"

def inference_sentence(text):
    tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
    model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
    for text in tqdm([text]):
        inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad(): # run model
        logits = model(**inputs).logits
        predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return "Predicted emotion:\n" + output
"""
def inference_sentence(text):
    output = "This sentence will be processed:\n" + text
    return output
"""

def unavailable(input_file, input_checks):
    output = "As we are currently updating this demo, submitting your own data is unavailable for the moment. However, you can try out the showcase mode 😊"
    return gr.update(visible=True), gr.update(value=output, label="Oops!", visible=True)

def showcase(input_file):
    output = "showcase/example_predictions.txt"
    return gr.update(visible=True), gr.update(visible=False), gr.update(value=output, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # next_button_freq becomes available

def file(input_file, input_checks):
    #output = "output.txt"
    #f = open(output, 'w')
    #f.write("The predictions come here.")
    #f.close()
    output = "showcase/example_predictions.txt"
    if "emotion frequencies" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # next_button_freq becomes available
    elif "emotion distribution over time" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)  # next_button_dist becomes available
    elif "peaks" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.update(value=output, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available

def freq(output_file, input_checks):
    #simple = pd.DataFrame({
    #'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness'],
    #'Frequency': [10, 8, 2, 15, 3, 4]})
    
    f = open("showcase/example_predictions.txt", 'r')
    data = f.read().split("\n")
    f.close()
    data = [line.split("\t") for line in data[1:-1]]
    
    freq_dict = {}
    for line in data:
    	if line[1] not in freq_dict.keys():
    		freq_dict[line[1]] = 1
    	else:
    		freq_dict[line[1]] += 1
    
    simple = pd.DataFrame({
    	'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness'],
    	'Frequency': [freq_dict['neutral'], freq_dict['anger'], freq_dict['fear'], freq_dict['joy'], freq_dict['love'], freq_dict['sadness']]})

    domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
    range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
    n = max(simple['Frequency'])

    plot = alt.Chart(simple).mark_bar().encode(
    x=alt.X("Emotion category", sort=['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']),
    y=alt.Y("Frequency", axis=alt.Axis(grid=False), scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
    color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=None),
    tooltip=['Emotion category', 'Frequency']).properties(
    width=600).configure_axis(
    grid=False).interactive()

    if "emotion distribution over time" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
        return gr.update(value=plot, visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)  # next_button_dist becomes available
    elif "peaks" in input_checks:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available


def dist(output_file, input_checks):
    #data = pd.DataFrame({
    #'Date': ['1/1', '1/1', '1/1', '1/1', '1/1', '1/1', '2/1', '2/1', '2/1', '2/1', '2/1', '2/1', '3/1', '3/1', '3/1', '3/1', '3/1', '3/1'],
    #'Frequency': [3, 5, 1, 8, 2, 3, 4, 7, 1, 12, 4, 2, 3, 6, 3, 10, 3, 4],
    #'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness', 'neutral', 'anger', 'fear', 'joy', 'love', 'sadness']})

    f = open("showcase/data.txt", 'r')
    data = f.read().split("\n")
    f.close()
    data = [line.split("\t") for line in data[1:-1]]
    
    freq_dict = {}
    for line in data:
    	dat = str(date(2000+int(line[0].split("/")[2]), int(line[0].split("/")[1]), int(line[0].split("/")[0])))
    	if dat not in freq_dict.keys():
    		freq_dict[dat] = {}
    		if line[1] not in freq_dict[dat].keys():
    			freq_dict[dat][line[1]] = 1
    		else:
    			freq_dict[dat][line[1]] += 1
    	else:
    		if line[1] not in freq_dict[dat].keys():
    			freq_dict[dat][line[1]] = 1
    		else:
    			freq_dict[dat][line[1]] += 1
    
    start_date = date(2000+int(data[0][0].split("/")[2]), int(data[0][0].split("/")[1]), int(data[0][0].split("/")[0]))
    end_date = date(2000+int(data[-1][0].split("/")[2]), int(data[-1][0].split("/")[1]), int(data[-1][0].split("/")[0]))
    delta = end_date - start_date   # returns timedelta
    date_range = [str(start_date + timedelta(days=i)) for i in range(delta.days + 1)]
    
    dates = [dat for dat in date_range for i in range(6)]
    frequency = [freq_dict[dat][emotion] if (dat in freq_dict.keys() and emotion in freq_dict[dat].keys()) else 0 for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
    categories = [emotion for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
    
    data = pd.DataFrame({
    	'Date': dates,
    	'Frequency': frequency,
    	'Emotion category': categories})

    domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
    range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
    n = max(data['Frequency'])
    
    highlight = alt.selection(
    type='single', on='mouseover', fields=["Emotion category"], nearest=True)

    
    base = alt.Chart(data).encode(
    x ="Date:T",
    y=alt.Y("Frequency", scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
    color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=alt.Legend(orient='bottom', direction='horizontal')))
    
    
    points = base.mark_circle().encode(
        opacity=alt.value(0),
        tooltip=[
            alt.Tooltip('Emotion category', title='Emotion category'),
            alt.Tooltip('Date:T', title='Date'),
            alt.Tooltip('Frequency', title='Frequency')
        ]).add_selection(highlight)

    
    lines = base.mark_line().encode(
        size=alt.condition(~highlight, alt.value(1), alt.value(3)))
    
    plot = (points + lines).properties(width=600, height=350).interactive()
    
    if "peaks" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=True), gr.update(visible=False)  # next_button_peaks becomes available
    elif "topics" in input_checks:
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=False), gr.update(visible=False)  # no next_button becomes available

def peaks(output_file, input_checks):
    plot = pickle.load(open('showcase/peaks_covid.p', 'rb'))
    if "topics" in input_checks or (output_file.name).startswith('/tmp/example_predictions'):
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=True)  # next_button_topics becomes available
    else:
        return gr.Plot.update(value=plot, visible=True), gr.update(visible=False)  # no next_button becomes available

def topics(output_file, input_checks):
    plot = pickle.load(open('showcase/vis_classes_covid.p', 'rb'))
    plot.update_layout(width=600, height=400)
    return gr.Plot.update(value=plot, visible=True)  # no next_button becomes available

# This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.


with gr.Blocks() as demo:
    with gr.Column(scale=1, min_width=50):
        gr.Markdown("""
                    """)
    with gr.Column(scale=5):
        gr.Markdown("""
                <div style="text-align: center"><h1>EmotioNL: A framework for Dutch emotion detection</h1></div>
                
                <div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
                
                <div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses <a href="https://github.com/iPieter/RobBERT">RobBERT</a>, which was further fine-tuned on the <a href="https://lt3.ugent.be/resources/emotionl/">EmotioNL dataset</a>. The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: <i>anger</i>, <i>fear</i>, <i>joy</i>, <i>love</i>, <i>sadness</i> or <i>neutral</i>. The demo can be used either in <b>sentence mode</b>, which allows you to enter a sentence for which an emotion will be predicted; or in <b>dataset mode</b>, which allows you to upload a dataset or see the full functionality with example data.</div>
                """)
        with gr.Tab("Sentence"):
            gr.Markdown("""
                        """)
            with gr.Row():
                with gr.Column():
                    input = gr.Textbox(
                            label="Enter a sentence",
                            value="Jaaah! Volgende vakantie Barcelona en na het zomerseizoen naar de Algarve",
                            lines=1)
                    send_btn = gr.Button("Send")
                output = gr.Textbox()
            send_btn.click(fn=inference_sentence, inputs=input, outputs=output)
        with gr.Tab("Dataset"):
            gr.Markdown("""
                    _As we are currently updating this demo, submitting your own data is unavailable for the moment._     
                    _Try out the showcase mode._
                    """)
            with gr.Row():
                with gr.Column():
                    demo_btn = gr.Button("Showcase with example data", variant="primary")
                with gr.Column():
                    gr.Markdown("""
                                **<font size="4">Run in showcase mode or use your own data</font>**     
                                Try out the demo in showcase mode, which uses example data (609,206 tweets about the COVID-19 pandemic) with all the options provided by the demo, or upload your own dataset.
                                """)
            with gr.Row():
                with gr.Column():
                    input_file = gr.File(
                        label="Upload a dataset")
                    input_checks = gr.CheckboxGroup(
                        ["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
                        label = "Select options")
                    send_btn = gr.Button("Submit data")
                with gr.Column():
                    gr.Markdown("""
                                **<font size="4">Data format</font>**     
                                The data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected. For now, we only accept files with maximum 400 sentences and a limit of 300 tokens per sentence.
                                
                                **<font size="4">Options</font>**     
                                **Emotion frequencies** outputs a bar plot with the prediction frequencies of each emotion category (anger, fear, joy, love, sadness or neutral).     
                                **Emotion distribution over time** outputs a line plot that visualises the frequency of predicted emotions over time for each emotion category.     
                                **Peaks** outputs a step graph that only shows the significant fluctuations (upwards and downwards) in emotion frequencies over time.     
                                **Topics** uses [BERTopic](https://maartengr.github.io/BERTopic/index.html) to find topics in the datasets, and outputs a bar plot that shows the emotion distribution per topic.     
                                """)
                    
                
            with gr.Row():
                gr.Markdown("""
                            ___
                            """)
            with gr.Row():
                with gr.Column():
                    output_markdown = gr.Markdown("""
                            **<font size="4">Output</font>**
                            """, visible=False)
                    
                    message = gr.Textbox(label="Message", visible=False)
    
                    output_file = gr.File(label="Predictions", visible=False)
                    next_button_freq = gr.Button("Show emotion frequencies", visible=False)
                    
                    output_plot = gr.Plot(show_label=False, visible=False).style(container=True)
                    next_button_dist = gr.Button("Show emotion distribution over time", visible=False)
                    
                    output_dist = gr.Plot(show_label=False, visible=False)
                    next_button_peaks = gr.Button("Show peaks", visible=False)
                    
                    output_peaks = gr.Plot(show_label=False, visible=False)
                    next_button_topics = gr.Button("Show topics", visible=False)
                    
                    output_topics = gr.Plot(show_label=False, visible=False)
            
            #send_btn.click(fn=file, inputs=[input_file,input_checks], outputs=[output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
            next_button_freq.click(fn=freq, inputs=[output_file,input_checks], outputs=[output_plot,next_button_dist,next_button_peaks,next_button_topics])
            next_button_dist.click(fn=dist, inputs=[output_file,input_checks], outputs=[output_dist,next_button_peaks,next_button_topics])
            next_button_peaks.click(fn=peaks, inputs=[output_file,input_checks], outputs=[output_peaks,next_button_topics])
            next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
            send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=[output_markdown,message])
            demo_btn.click(fn=showcase, inputs=[input_file], outputs=[output_markdown,message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("""
                    <font size="2">Both this demo and the dataset have been created by [LT3](https://lt3.ugent.be/), the Language and Translation Technology Team of Ghent University. The EmotioNL project has been carried out with support from the Research Foundation – Flanders (FWO). For any questions, please contact luna.debruyne@ugent.be.</font>
                    
                    <div style="display: grid;grid-template-columns:150px auto;"> <img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
                    """)
    with gr.Column(scale=1, min_width=50):
        gr.Markdown("""
                    """)
            
demo.launch()
# <div style="display: grid;grid-template-columns:80px 150px auto;"><img style="margin-right: 1em" alt="UGent logo" src="https://lt3.ugent.be/static/images/logo_ugent_en.svg" height="58"> <img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>