import gradio as gr import torch import numpy as np import pandas as pd from tqdm import tqdm import matplotlib.pyplot as plt from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification description_sentence = "

Demo EmotioNL

\nThis demo allows you to analyse the emotion in a sentence." description_dataset = "

Demo EmotioNL

\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected." inference_modelpath = "model/checkpoint-128" def inference_sentence(text): tokenizer = AutoTokenizer.from_pretrained(inference_modelpath) model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath) for text in tqdm([text]): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): # run model logits = model(**inputs).logits predicted_class_id = logits.argmax().item() output = model.config.id2label[predicted_class_id] return output def frequencies(preds): preds_dict = {"neutral": 0, "anger": 0, "fear": 0, "joy": 0, "love": 0, "sadness": 0} for pred in preds: preds_dict[pred] = preds_dict[pred] + 1 bars = list(preds_dict.keys()) height = list(preds_dict.values()) x_pos = np.arange(len(bars)) plt.bar(x_pos, height, color=['lightgrey', 'firebrick', 'rebeccapurple', 'orange', 'palevioletred', 'cornflowerblue']) plt.xticks(x_pos, bars) return plt def inference_dataset(file_object, option_list): tokenizer = AutoTokenizer.from_pretrained(inference_modelpath) model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath) data_path = open(file_object.name, 'r') df = pd.read_csv(data_path, delimiter='\t', header=0, names=['id', 'text']) ids = df["id"].tolist() texts = df["text"].tolist() preds = [] for text in tqdm(texts): # progressbar inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): # run model logits = model(**inputs).logits predicted_class_id = logits.argmax().item() prediction = model.config.id2label[predicted_class_id] preds.append(prediction) predictions_content = list(zip(ids, texts, preds)) # write predictions to file output = "output.txt" f = open(output, 'w') f.write("id\ttext\tprediction\n") for line in predictions_content: f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n') output1 = output output2 = output3 = output4 = output5 = "This option was not selected." if "emotion frequencies" in option_list: output2 = frequencies(preds) else: output2 = None if "emotion distribution over time" in option_list: output3 = "This option was selected." if "peaks" in option_list: output4 = "This option was selected." if "topics" in option_list: output5 = "This option was selected." return [output1, output2, output3, output4, output5] iface_sentence = gr.Interface( fn=inference_sentence, description = description_sentence, inputs = gr.Textbox( label="Enter a sentence", lines=1), outputs="text") inputs = [gr.File( label="Upload a dataset"), gr.CheckboxGroup( ["emotion frequencies", "emotion distribution over time", "peaks", "topics"], label = "Select options")] outputs = [gr.File(), gr.Plot(label="Emotion frequencies"), gr.Textbox(label="Emotion distribution over time"), gr.Textbox(label="Peaks"), gr.Textbox(label="Topics")] iface_dataset = gr.Interface( fn = inference_dataset, description = description_dataset, inputs=inputs, outputs = outputs) iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"]) iface.queue().launch()