Spaces:
No application file
No application file
File size: 39,723 Bytes
1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 1d2444d c958d73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import warnings
from tqdm.auto import tqdm
from PIL import Image
from movie_util import MovieSaver
from typing import List, Optional
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentInpaintDiffusion
import lpips
from utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
class LatentBlending():
def __init__(
self,
sdh: None,
guidance_scale: float = 4,
guidance_scale_mid_damper: float = 0.5,
mid_compression_scaler: float = 1.2):
r"""
Initializes the latent blending class.
Args:
guidance_scale: float
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
guidance_scale_mid_damper: float = 0.5
Reduces the guidance scale towards the middle of the transition.
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
mid_compression_scaler: float = 2.0
Increases the sampling density in the middle (where most changes happen). Higher value
imply more values in the middle. However the inflection point can occur outside the middle,
thus high values can give rough transitions. Values around 2 should be fine.
"""
assert guidance_scale_mid_damper > 0 \
and guidance_scale_mid_damper <= 1.0, \
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
self.sdh = sdh
self.device = self.sdh.device
self.width = self.sdh.width
self.height = self.sdh.height
self.guidance_scale_mid_damper = guidance_scale_mid_damper
self.mid_compression_scaler = mid_compression_scaler
self.seed1 = 0
self.seed2 = 0
# Initialize vars
self.prompt1 = ""
self.prompt2 = ""
self.negative_prompt = ""
self.tree_latents = [None, None]
self.tree_fracts = None
self.idx_injection = []
self.tree_status = None
self.tree_final_imgs = []
self.list_nmb_branches_prev = []
self.list_injection_idx_prev = []
self.text_embedding1 = None
self.text_embedding2 = None
self.image1_lowres = None
self.image2_lowres = None
self.negative_prompt = None
self.num_inference_steps = self.sdh.num_inference_steps
self.noise_level_upscaling = 20
self.list_injection_idx = None
self.list_nmb_branches = None
# Mixing parameters
self.branch1_crossfeed_power = 0.1
self.branch1_crossfeed_range = 0.6
self.branch1_crossfeed_decay = 0.8
self.parental_crossfeed_power = 0.1
self.parental_crossfeed_range = 0.8
self.parental_crossfeed_power_decay = 0.8
self.set_guidance_scale(guidance_scale)
self.init_mode()
self.multi_transition_img_first = None
self.multi_transition_img_last = None
self.dt_per_diff = 0
self.spatial_mask = None
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
def init_mode(self):
r"""
Sets the operational mode. Currently supported are standard, inpainting and x4 upscaling.
"""
if isinstance(self.sdh.model, LatentUpscaleDiffusion):
self.mode = 'upscale'
elif isinstance(self.sdh.model, LatentInpaintDiffusion):
self.sdh.image_source = None
self.sdh.mask_image = None
self.mode = 'inpaint'
else:
self.mode = 'standard'
def set_guidance_scale(self, guidance_scale):
r"""
sets the guidance scale.
"""
self.guidance_scale_base = guidance_scale
self.guidance_scale = guidance_scale
self.sdh.guidance_scale = guidance_scale
def set_negative_prompt(self, negative_prompt):
r"""Set the negative prompt. Currenty only one negative prompt is supported
"""
self.negative_prompt = negative_prompt
self.sdh.set_negative_prompt(negative_prompt)
def set_guidance_mid_dampening(self, fract_mixing):
r"""
Tunes the guidance scale down as a linear function of fract_mixing,
towards 0.5 the minimum will be reached.
"""
mid_factor = 1 - np.abs(fract_mixing - 0.5) / 0.5
max_guidance_reduction = self.guidance_scale_base * (1 - self.guidance_scale_mid_damper) - 1
guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction * mid_factor
self.guidance_scale = guidance_scale_effective
self.sdh.guidance_scale = guidance_scale_effective
def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
r"""
Sets the crossfeed parameters for the first branch to the last branch.
Args:
crossfeed_power: float [0,1]
Controls the level of cross-feeding between the first and last image branch.
crossfeed_range: float [0,1]
Sets the duration of active crossfeed during development.
crossfeed_decay: float [0,1]
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
"""
self.branch1_crossfeed_power = np.clip(crossfeed_power, 0, 1)
self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
r"""
Sets the crossfeed parameters for all transition images (within the first and last branch).
Args:
crossfeed_power: float [0,1]
Controls the level of cross-feeding from the parental branches
crossfeed_range: float [0,1]
Sets the duration of active crossfeed during development.
crossfeed_decay: float [0,1]
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
"""
self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.parental_crossfeed_power_decay = np.clip(crossfeed_decay, 0, 1)
def set_prompt1(self, prompt: str):
r"""
Sets the first prompt (for the first keyframe) including text embeddings.
Args:
prompt: str
ABC trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt1 = prompt
self.text_embedding1 = self.get_text_embeddings(self.prompt1)
def set_prompt2(self, prompt: str):
r"""
Sets the second prompt (for the second keyframe) including text embeddings.
Args:
prompt: str
XYZ trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt2 = prompt
self.text_embedding2 = self.get_text_embeddings(self.prompt2)
def set_image1(self, image: Image):
r"""
Sets the first image (keyframe), relevant for the upscaling model transitions.
Args:
image: Image
"""
self.image1_lowres = image
def set_image2(self, image: Image):
r"""
Sets the second image (keyframe), relevant for the upscaling model transitions.
Args:
image: Image
"""
self.image2_lowres = image
def run_transition(
self,
recycle_img1: Optional[bool] = False,
recycle_img2: Optional[bool] = False,
num_inference_steps: Optional[int] = 30,
depth_strength: Optional[float] = 0.3,
t_compute_max_allowed: Optional[float] = None,
nmb_max_branches: Optional[int] = None,
fixed_seeds: Optional[List[int]] = None):
r"""
Function for computing transitions.
Returns a list of transition images using spherical latent blending.
Args:
recycle_img1: Optional[bool]:
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
recycle_img2: Optional[bool]:
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
t_compute_max_allowed:
Either provide t_compute_max_allowed or nmb_max_branches.
The maximum time allowed for computation. Higher values give better results but take longer.
nmb_max_branches: int
Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
results. Use this if you want to have controllable results independent
of your computer.
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
# Sanity checks first
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
# Random seeds
if fixed_seeds is not None:
if fixed_seeds == 'randomize':
fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
else:
assert len(fixed_seeds) == 2, "Supply a list with len = 2"
self.seed1 = fixed_seeds[0]
self.seed2 = fixed_seeds[1]
# Ensure correct num_inference_steps in holder
self.num_inference_steps = num_inference_steps
self.sdh.num_inference_steps = num_inference_steps
# Compute / Recycle first image
if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
list_latents1 = self.compute_latents1()
else:
list_latents1 = self.tree_latents[0]
# Compute / Recycle first image
if not recycle_img2 or len(self.tree_latents[-1]) != self.num_inference_steps:
list_latents2 = self.compute_latents2()
else:
list_latents2 = self.tree_latents[-1]
# Reset the tree, injecting the edge latents1/2 we just generated/recycled
self.tree_latents = [list_latents1, list_latents2]
self.tree_fracts = [0.0, 1.0]
self.tree_final_imgs = [self.sdh.latent2image((self.tree_latents[0][-1])), self.sdh.latent2image((self.tree_latents[-1][-1]))]
self.tree_idx_injection = [0, 0]
# Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
self.spatial_mask = None
# Set up branching scheme (dependent on provided compute time)
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
# Run iteratively, starting with the longest trajectory.
# Always inserting new branches where they are needed most according to image similarity
for s_idx in tqdm(range(len(list_idx_injection))):
nmb_stems = list_nmb_stems[s_idx]
idx_injection = list_idx_injection[s_idx]
for i in range(nmb_stems):
fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
self.set_guidance_mid_dampening(fract_mixing)
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
return self.tree_final_imgs
def compute_latents1(self, return_image=False):
r"""
Runs a diffusion trajectory for the first image
Args:
return_image: bool
whether to return an image or the list of latents
"""
print("starting compute_latents1")
list_conditionings = self.get_mixed_conditioning(0)
t0 = time.time()
latents_start = self.get_noise(self.seed1)
list_latents1 = self.run_diffusion(
list_conditionings,
latents_start=latents_start,
idx_start=0)
t1 = time.time()
self.dt_per_diff = (t1 - t0) / self.num_inference_steps
self.tree_latents[0] = list_latents1
if return_image:
return self.sdh.latent2image(list_latents1[-1])
else:
return list_latents1
def compute_latents2(self, return_image=False):
r"""
Runs a diffusion trajectory for the last image, which may be affected by the first image's trajectory.
Args:
return_image: bool
whether to return an image or the list of latents
"""
print("starting compute_latents2")
list_conditionings = self.get_mixed_conditioning(1)
latents_start = self.get_noise(self.seed2)
# Influence from branch1
if self.branch1_crossfeed_power > 0.0:
# Set up the mixing_coeffs
idx_mixing_stop = int(round(self.num_inference_steps * self.branch1_crossfeed_range))
mixing_coeffs = list(np.linspace(self.branch1_crossfeed_power, self.branch1_crossfeed_power * self.branch1_crossfeed_decay, idx_mixing_stop))
mixing_coeffs.extend((self.num_inference_steps - idx_mixing_stop) * [0])
list_latents_mixing = self.tree_latents[0]
list_latents2 = self.run_diffusion(
list_conditionings,
latents_start=latents_start,
idx_start=0,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs)
else:
list_latents2 = self.run_diffusion(list_conditionings, latents_start)
self.tree_latents[-1] = list_latents2
if return_image:
return self.sdh.latent2image(list_latents2[-1])
else:
return list_latents2
def compute_latents_mix(self, fract_mixing, b_parent1, b_parent2, idx_injection):
r"""
Runs a diffusion trajectory, using the latents from the respective parents
Args:
fract_mixing: float
the fraction along the transition axis [0, 1]
b_parent1: int
index of parent1 to be used
b_parent2: int
index of parent2 to be used
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
"""
list_conditionings = self.get_mixed_conditioning(fract_mixing)
fract_mixing_parental = (fract_mixing - self.tree_fracts[b_parent1]) / (self.tree_fracts[b_parent2] - self.tree_fracts[b_parent1])
# idx_reversed = self.num_inference_steps - idx_injection
list_latents_parental_mix = []
for i in range(self.num_inference_steps):
latents_p1 = self.tree_latents[b_parent1][i]
latents_p2 = self.tree_latents[b_parent2][i]
if latents_p1 is None or latents_p2 is None:
latents_parental = None
else:
latents_parental = interpolate_spherical(latents_p1, latents_p2, fract_mixing_parental)
list_latents_parental_mix.append(latents_parental)
idx_mixing_stop = int(round(self.num_inference_steps * self.parental_crossfeed_range))
mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
nmb_mixing = idx_mixing_stop - idx_injection
if nmb_mixing > 0:
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_power_decay, nmb_mixing)))
mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
latents_start = list_latents_parental_mix[idx_injection - 1]
list_latents = self.run_diffusion(
list_conditionings,
latents_start=latents_start,
idx_start=idx_injection,
list_latents_mixing=list_latents_parental_mix,
mixing_coeffs=mixing_coeffs)
return list_latents
def get_time_based_branching(self, depth_strength, t_compute_max_allowed=None, nmb_max_branches=None):
r"""
Sets up the branching scheme dependent on the time that is granted for compute.
The scheme uses an estimation derived from the first image's computation speed.
Either provide t_compute_max_allowed or nmb_max_branches
Args:
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
t_compute_max_allowed: float
The maximum time allowed for computation. Higher values give better results
but take longer. Use this if you want to fix your waiting time for the results.
nmb_max_branches: int
The maximum number of branches to be computed. Higher values give better
results. Use this if you want to have controllable results independent
of your computer.
"""
idx_injection_base = int(round(self.num_inference_steps * depth_strength))
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps - 1, 3)
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
t_compute = 0
if nmb_max_branches is None:
assert t_compute_max_allowed is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
stop_criterion = "t_compute_max_allowed"
elif t_compute_max_allowed is None:
assert nmb_max_branches is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
stop_criterion = "nmb_max_branches"
nmb_max_branches -= 2 # Discounting the outer frames
else:
raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
stop_criterion_reached = False
is_first_iteration = True
while not stop_criterion_reached:
list_compute_steps = self.num_inference_steps - list_idx_injection
list_compute_steps *= list_nmb_stems
t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
increase_done = False
for s_idx in range(len(list_nmb_stems) - 1):
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
list_nmb_stems[s_idx] += 1
increase_done = True
break
if not increase_done:
list_nmb_stems[-1] += 1
if stop_criterion == "t_compute_max_allowed" and t_compute > t_compute_max_allowed:
stop_criterion_reached = True
elif stop_criterion == "nmb_max_branches" and np.sum(list_nmb_stems) >= nmb_max_branches:
stop_criterion_reached = True
if is_first_iteration:
# Need to undersample.
list_idx_injection = np.linspace(list_idx_injection[0], list_idx_injection[-1], nmb_max_branches).astype(np.int32)
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
else:
is_first_iteration = False
# print(f"t_compute {t_compute} list_nmb_stems {list_nmb_stems}")
return list_idx_injection, list_nmb_stems
def get_mixing_parameters(self, idx_injection):
r"""
Computes which parental latents should be mixed together to achieve a smooth blend.
As metric, we are using lpips image similarity. The insertion takes place
where the metric is maximal.
Args:
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
"""
# get_lpips_similarity
similarities = []
for i in range(len(self.tree_final_imgs) - 1):
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
b_closest1 = np.argmax(similarities)
b_closest2 = b_closest1 + 1
fract_closest1 = self.tree_fracts[b_closest1]
fract_closest2 = self.tree_fracts[b_closest2]
# Ensure that the parents are indeed older!
b_parent1 = b_closest1
while True:
if self.tree_idx_injection[b_parent1] < idx_injection:
break
else:
b_parent1 -= 1
b_parent2 = b_closest2
while True:
if self.tree_idx_injection[b_parent2] < idx_injection:
break
else:
b_parent2 += 1
fract_mixing = (fract_closest1 + fract_closest2) / 2
return fract_mixing, b_parent1, b_parent2
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
r"""
Inserts all necessary parameters into the trajectory tree.
Args:
fract_mixing: float
the fraction along the transition axis [0, 1]
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
list_latents: list
list of the latents to be inserted
"""
b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
self.tree_latents.insert(b_parent1 + 1, list_latents)
self.tree_final_imgs.insert(b_parent1 + 1, self.sdh.latent2image(list_latents[-1]))
self.tree_fracts.insert(b_parent1 + 1, fract_mixing)
self.tree_idx_injection.insert(b_parent1 + 1, idx_injection)
def get_spatial_mask_template(self):
r"""
Experimental helper function to get a spatial mask template.
"""
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
C, H, W = shape_latents
return np.ones((H, W))
def set_spatial_mask(self, img_mask):
r"""
Experimental helper function to set a spatial mask.
The mask forces latents to be overwritten.
Args:
img_mask:
mask image [0,1]. You can get a template using get_spatial_mask_template
"""
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
C, H, W = shape_latents
img_mask = np.asarray(img_mask)
assert len(img_mask.shape) == 2, "Currently, only 2D images are supported as mask"
img_mask = np.clip(img_mask, 0, 1)
assert img_mask.shape[0] == H, f"Your mask needs to be of dimension {H} x {W}"
assert img_mask.shape[1] == W, f"Your mask needs to be of dimension {H} x {W}"
spatial_mask = torch.from_numpy(img_mask).to(device=self.device)
spatial_mask = torch.unsqueeze(spatial_mask, 0)
spatial_mask = spatial_mask.repeat((C, 1, 1))
spatial_mask = torch.unsqueeze(spatial_mask, 0)
self.spatial_mask = spatial_mask
def get_noise(self, seed):
r"""
Helper function to get noise given seed.
Args:
seed: int
"""
generator = torch.Generator(device=self.sdh.device).manual_seed(int(seed))
if self.mode == 'standard':
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
C, H, W = shape_latents
elif self.mode == 'upscale':
w = self.image1_lowres.size[0]
h = self.image1_lowres.size[1]
shape_latents = [self.sdh.model.channels, h, w]
C, H, W = shape_latents
return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)
@torch.no_grad()
def run_diffusion(
self,
list_conditionings,
latents_start: torch.FloatTensor = None,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
r"""
Wrapper function for diffusion runners.
Depending on the mode, the correct one will be executed.
Args:
list_conditionings: list
List of all conditionings for the diffusion model.
latents_start: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
list_latents_mixing: torch.FloatTensor
List of latents (latent trajectories) that are used for mixing
mixing_coeffs: float or list
Coefficients, how strong each element of list_latents_mixing will be mixed in.
return_image: Optional[bool]
Optionally return image directly
"""
# Ensure correct num_inference_steps in Holder
self.sdh.num_inference_steps = self.num_inference_steps
assert type(list_conditionings) is list, "list_conditionings need to be a list"
if self.mode == 'standard':
text_embeddings = list_conditionings[0]
return self.sdh.run_diffusion_standard(
text_embeddings=text_embeddings,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs,
spatial_mask=self.spatial_mask,
return_image=return_image)
elif self.mode == 'upscale':
cond = list_conditionings[0]
uc_full = list_conditionings[1]
return self.sdh.run_diffusion_upscaling(
cond,
uc_full,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs,
return_image=return_image)
def run_upscaling(
self,
dp_img: str,
depth_strength: float = 0.65,
num_inference_steps: int = 100,
nmb_max_branches_highres: int = 5,
nmb_max_branches_lowres: int = 6,
duration_single_segment=3,
fps=24,
fixed_seeds: Optional[List[int]] = None):
r"""
Runs upscaling with the x4 model. Requires that you run a transition before with a low-res model and save the results using write_imgs_transition.
Args:
dp_img: str
Path to the low-res transition path (as saved in write_imgs_transition)
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
nmb_max_branches_highres: int
Number of final branches of the upscaling transition pass. Note this is the number
of branches between each pair of low-res images.
nmb_max_branches_lowres: int
Number of input low-res images, subsampling all transition images written in the low-res pass.
Setting this number lower (e.g. 6) will decrease the compute time but not affect the results too much.
duration_single_segment: float
The duration of each high-res movie segment. You will have nmb_max_branches_lowres-1 segments in total.
fps: float
frames per second of movie
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
fp_yml = os.path.join(dp_img, "lowres.yaml")
fp_movie = os.path.join(dp_img, "movie_highres.mp4")
ms = MovieSaver(fp_movie, fps=fps)
assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
dict_stuff = yml_load(fp_yml)
# load lowres images
nmb_images_lowres = dict_stuff['nmb_images']
prompt1 = dict_stuff['prompt1']
prompt2 = dict_stuff['prompt2']
idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres - 1, nmb_max_branches_lowres)).astype(np.int32)
imgs_lowres = []
for i in idx_img_lowres:
fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
imgs_lowres.append(Image.open(fp_img_lowres))
# set up upscaling
text_embeddingA = self.sdh.get_text_embedding(prompt1)
text_embeddingB = self.sdh.get_text_embedding(prompt2)
list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres - 1)
for i in range(nmb_max_branches_lowres - 1):
print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1 - list_fract_mixing[i])
if i == 0:
recycle_img1 = False
else:
self.swap_forward()
recycle_img1 = True
self.set_image1(imgs_lowres[i])
self.set_image2(imgs_lowres[i + 1])
list_imgs = self.run_transition(
recycle_img1=recycle_img1,
recycle_img2=False,
num_inference_steps=num_inference_steps,
depth_strength=depth_strength,
nmb_max_branches=nmb_max_branches_highres)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_segment)
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
@torch.no_grad()
def get_mixed_conditioning(self, fract_mixing):
if self.mode == 'standard':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
list_conditionings = [text_embeddings_mix]
elif self.mode == 'inpaint':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
list_conditionings = [text_embeddings_mix]
elif self.mode == 'upscale':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
cond, uc_full = self.sdh.get_cond_upscaling(self.image1_lowres, text_embeddings_mix, self.noise_level_upscaling)
condB, uc_fullB = self.sdh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
list_conditionings = [cond, uc_full]
else:
raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
return list_conditionings
@torch.no_grad()
def get_text_embeddings(
self,
prompt: str):
r"""
Computes the text embeddings provided a string with a prompts.
Adapted from stable diffusion repo
Args:
prompt: str
ABC trending on artstation painted by Old Greg.
"""
return self.sdh.get_text_embedding(prompt)
def write_imgs_transition(self, dp_img):
r"""
Writes the transition images into the folder dp_img.
Requires run_transition to be completed.
Args:
dp_img: str
Directory, into which the transition images, yaml file and latents are written.
"""
imgs_transition = self.tree_final_imgs
os.makedirs(dp_img, exist_ok=True)
for i, img in enumerate(imgs_transition):
img_leaf = Image.fromarray(img)
img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
fp_yml = os.path.join(dp_img, "lowres.yaml")
self.save_statedict(fp_yml)
def write_movie_transition(self, fp_movie, duration_transition, fps=30):
r"""
Writes the transition movie to fp_movie, using the given duration and fps..
The missing frames are linearly interpolated.
Args:
fp_movie: str
file pointer to the final movie.
duration_transition: float
duration of the movie in seonds
fps: int
fps of the movie
"""
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
# Save as MP4
if os.path.isfile(fp_movie):
os.remove(fp_movie)
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.sdh.height, self.sdh.width])
for img in tqdm(imgs_transition_ext):
ms.write_frame(img)
ms.finalize()
def save_statedict(self, fp_yml):
# Dump everything relevant into yaml
imgs_transition = self.tree_final_imgs
state_dict = self.get_state_dict()
state_dict['nmb_images'] = len(imgs_transition)
yml_save(fp_yml, state_dict)
def get_state_dict(self):
state_dict = {}
grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_power_decay']
for v in grab_vars:
if hasattr(self, v):
if v == 'seed1' or v == 'seed2':
state_dict[v] = int(getattr(self, v))
elif v == 'guidance_scale':
state_dict[v] = float(getattr(self, v))
else:
try:
state_dict[v] = getattr(self, v)
except Exception:
pass
return state_dict
def randomize_seed(self):
r"""
Set a random seed for a fresh start.
"""
seed = np.random.randint(999999999)
self.set_seed(seed)
def set_seed(self, seed: int):
r"""
Set a the seed for a fresh start.
"""
self.seed = seed
self.sdh.seed = seed
def set_width(self, width):
r"""
Set the width of the resulting image.
"""
assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
self.width = width
self.sdh.width = width
def set_height(self, height):
r"""
Set the height of the resulting image.
"""
assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
self.height = height
self.sdh.height = height
def swap_forward(self):
r"""
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
as in run_multi_transition()
"""
# Move over all latents
self.tree_latents[0] = self.tree_latents[-1]
# Move over prompts and text embeddings
self.prompt1 = self.prompt2
self.text_embedding1 = self.text_embedding2
# Final cleanup for extra sanity
self.tree_final_imgs = []
def get_lpips_similarity(self, imgA, imgB):
r"""
Computes the image similarity between two images imgA and imgB.
Used to determine the optimal point of insertion to create smooth transitions.
High values indicate low similarity.
"""
tensorA = torch.from_numpy(imgA).float().cuda(self.device)
tensorA = 2 * tensorA / 255.0 - 1
tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
tensorB = torch.from_numpy(imgB).float().cuda(self.device)
tensorB = 2 * tensorB / 255.0 - 1
tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
lploss = self.lpips(tensorA, tensorB)
lploss = float(lploss[0][0][0][0])
return lploss
# Auxiliary functions
def get_closest_idx(
self,
fract_mixing: float):
r"""
Helper function to retrieve the parents for any given mixing.
Example: fract_mixing = 0.4 and self.tree_fracts = [0, 0.3, 0.6, 1.0]
Will return the two closest values here, i.e. [1, 2]
"""
pdist = fract_mixing - np.asarray(self.tree_fracts)
pdist_pos = pdist.copy()
pdist_pos[pdist_pos < 0] = np.inf
b_parent1 = np.argmin(pdist_pos)
pdist_neg = -pdist.copy()
pdist_neg[pdist_neg <= 0] = np.inf
b_parent2 = np.argmin(pdist_neg)
if b_parent1 > b_parent2:
tmp = b_parent2
b_parent2 = b_parent1
b_parent1 = tmp
return b_parent1, b_parent2
|