Spaces:
No application file
No application file
import torch | |
import warnings | |
from diffusers import AutoPipelineForText2Image | |
from lunar_tools import concatenate_movies | |
from latentblending.blending_engine import BlendingEngine | |
import numpy as np | |
torch.set_grad_enabled(False) | |
torch.backends.cudnn.benchmark = False | |
warnings.filterwarnings('ignore') | |
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice. | |
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo" | |
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16") | |
pipe.to('cuda') | |
be = BlendingEngine(pipe, do_compile=True) | |
be.set_negative_prompt("blurry, pale, low-res, lofi") | |
# %% Let's setup the multi transition | |
fps = 30 | |
duration_single_trans = 10 | |
be.set_dimensions((1024, 1024)) | |
nmb_prompts = 20 | |
# Specify a list of prompts below | |
#%% | |
list_prompts = [] | |
list_prompts.append("high resolution ultra 8K image with lake and forest") | |
list_prompts.append("strange and alien desolate lanscapes 8K") | |
list_prompts.append("ultra high res psychedelic skyscraper city landscape 8K unreal engine") | |
#%% | |
fp_movie = f'surreal_nmb{len(list_prompts)}.mp4' | |
# Specify the seeds | |
list_seeds = np.random.randint(0, np.iinfo(np.int32).max, len(list_prompts)) | |
list_movie_parts = [] | |
for i in range(len(list_prompts) - 1): | |
# For a multi transition we can save some computation time and recycle the latents | |
if i == 0: | |
be.set_prompt1(list_prompts[i]) | |
be.set_prompt2(list_prompts[i + 1]) | |
recycle_img1 = False | |
else: | |
be.swap_forward() | |
be.set_prompt2(list_prompts[i + 1]) | |
recycle_img1 = True | |
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4" | |
fixed_seeds = list_seeds[i:i + 2] | |
# Run latent blending | |
be.run_transition( | |
recycle_img1=recycle_img1, | |
fixed_seeds=fixed_seeds) | |
# Save movie | |
be.write_movie_transition(fp_movie_part, duration_single_trans) | |
list_movie_parts.append(fp_movie_part) | |
# Finally, concatente the result | |
concatenate_movies(fp_movie, list_movie_parts) | |