train / app.py
luohoa97's picture
Create app.py
40510d6 verified
import streamlit as st
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from sklearn.model_selection import train_test_split
import os
import json
# Dataset class for PyTorch
class TextDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
# Return input_ids, attention_mask, and labels for each item
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx]) # Adding labels for loss calculation
return item
def __len__(self):
return len(self.labels)
# Function to load configuration
def load_config(config_path='config.json'):
with open(config_path, 'r') as f:
config = json.load(f)
return config
# Main function
def main():
st.title("CSV Data Processing and Model Training 🧠")
# Load configuration
config = load_config()
# Upload multiple CSV files
uploaded_files = st.file_uploader("Upload CSV files", accept_multiple_files=True, type="csv")
if uploaded_files:
combined_texts = []
# Process each uploaded CSV file
for uploaded_file in uploaded_files:
df = pd.read_csv(uploaded_file)
# Combine all columns into a single text string for each row
combined_texts.extend(df.astype(str).agg(' '.join, axis=1))
# Check the combined text
st.write("Combined text for training:", combined_texts[:5]) # Show first 5 for verification
# Ask the user if they want to load an existing model or train a new one
use_existing_model = st.checkbox("Load an existing local model?", value=False)
if use_existing_model:
# Allow the user to select a local model directory
model_path = st.text_input("Enter the path to the local model directory:", value="")
if model_path and os.path.exists(model_path):
model = AutoModelForSequenceClassification.from_pretrained(model_path)
st.write(f"Loaded model from {model_path} successfully! πŸŽ‰")
else:
st.warning("Please provide a valid model directory path.")
return
else:
# Initialize a new model
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# Tokenize combined text data
inputs = tokenizer(combined_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
# Create dummy labels (e.g., 0s for all entries)
labels = [0] * len(combined_texts) # Dummy labels for all data
# Split data into training and validation sets
train_inputs, val_inputs, train_labels, val_labels = train_test_split(
inputs['input_ids'], labels, test_size=0.2, random_state=42
)
# Prepare datasets
train_dataset = TextDataset(encodings={'input_ids': train_inputs}, labels=train_labels)
val_dataset = TextDataset(encodings={'input_ids': val_inputs}, labels=val_labels)
# Determine number of threads from config
num_workers = config.get('num_workers', 4)
# Set up DataLoaders
train_dataloader = DataLoader(train_dataset, batch_size=8, num_workers=num_workers)
val_dataloader = DataLoader(val_dataset, batch_size=8, num_workers=num_workers)
# Training arguments
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=1, # total number of training epochs
per_device_train_batch_size=8, # batch size per device during training
per_device_eval_batch_size=8, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
evaluation_strategy="epoch"
)
# Initialize Trainer
trainer = Trainer(
model=model, # the instantiated πŸ€— Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
# Start training
trainer.train()
# Ask the user for a directory to save the trained model
save_path = st.text_input("Enter the directory path to save the trained model:", value="./trained_model")
if save_path:
os.makedirs(save_path, exist_ok=True)
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
st.write(f"Model saved successfully to {save_path}! πŸŽ‰")
else:
st.warning("Please provide a valid directory path to save the model.")
# Notify user of training completion
st.success("Training completed successfully! πŸš€")
if __name__ == "__main__":
main()